Introduction Asset Pricing Tests The Econometrics

Discussion of: Hedging Risk Factors

Bernard Herskovic, Alan Moreira and Tyler Muir

Kent Daniel[†]

[†]Columbia Business School & NBER

2019 AFA Meetings January 7, 2019

Paper Outline

- HMM's exercise is to try reduce the "risk" of various factor portfolios.
 - Risk can mean either (1) total variance, or (2) the exposure of the factor portfolio to innovations in macroeconomic quantities.
- HMM propose the construction of hedge portfolios using ex-ante/pre-formation estimates of individual asset $\beta_{i,f}$ s.
- They then combine the original factor portfolios with the hedge portfolios.
- In almost all cases, the hedged factor portfolio has the same average return.

Discussion Outline

In this discussion, I want to do two things:

- Talk about why this is an important result.
- A bunch of AP tests have gotten results that these results seem to contradict. Why?
 - The geometry of asset-pricing tests.
 - The importance of expanding the dimensionality of the asset-return space
 - Lewellen, Nagel, and Shanken (2010), Daniel and Titman (2012).
 - How to optimally expand the dimensionality of the asset-return space.

Why do we care?

• The FOC for portfolio optimization is:

$$\mathbb{E}_{t-1}[\tilde{m}_t \tilde{R}_{i,t}] = 1 \quad \text{or} \quad \mathbb{E}_{t-1}[\tilde{m}_t \tilde{R}_{i,t}^e] = 0$$

• A little rearranging of this relation, for any excess return \tilde{R}_{i}^{e} , gives:

$$\begin{split} &\Rightarrow cov(\tilde{m}, \tilde{R}_i^e) &= \underbrace{\mathbb{E}[\tilde{m}\tilde{R}_i^e]}_{=0} - \underbrace{\mathbb{E}[\tilde{m}]}_{=1/R_f} \cdot \mathbb{E}[\tilde{R}^e] \\ &\Rightarrow \mathbb{E}[\tilde{R}_i^e] &= -R_f \cdot cov(\tilde{m}, \tilde{R}_i^e) \\ &\Rightarrow \frac{\mathbb{E}[\tilde{R}_i^e]}{\sigma(\tilde{R}_i^e)} &\approx -\rho_{i,m}\sigma_m \\ &SR_i &\approx -\rho_{i,m}\sigma_m \end{split}$$

where:

- $\rho_{im} = \rho(\tilde{R}_i^e, \tilde{m})$
- R_f , the gross riskfree rate, ≈ 1 .

Why do we care?

$$SR_i \approx -\rho_{i,m}\sigma_m$$

- This implies that the return of any high SR long-short portfolio must be really negatively correlated with innovations in marginal utility for all investors.
 - If this is violated for any investor, then that investor's FOC for portfolio optimization is violated.
- Empirically the annualized portfolio SRs (1963:07–2018:09) are:

	w^*	$_{\rm EW}$
CRSP-VW	0.43	_
FF5	1.09	0.95
FF5+UMD	1.60	1.19

- The high SRs suggest that these anomaly portfolios must be strongly negatively correlated with m.u. innovations.
 - and thus strongly correlated with innovations in macro variables like consumption, production, etc..

Why do we care?

$$SR_i \approx -\rho_{i,m}\sigma_m$$

- This implies that the return of any high SR long-short portfolio must be really negatively correlated with innovations in marginal utility for all investors.
 - If this is violated for any investor, then that investor's FOC for portfolio optimization is violated.
- Empirically the annualized portfolio SRs (1963:07–2018:09) are:

	w^*	$_{\rm EW}$
CRSP-VW	0.43	_
FF5	1.09	0.95
FF5+UMD	1.60	1.19

- The high SRs suggest that these anomaly portfolios must be strongly negatively correlated with m.u. innovations.
 - and thus strongly correlated with innovations in macro variables like consumption, production, etc..

What the literature (mostly) does

- Over the last few decades, a "standard" asset pricing test has been to introduce a new factor, and see if it can price characteristic-sorted portfolios
 - e.g., the Fama and French (1993) 25 Size-BM sorted portfolios.
- This means, does some linear combination of the factor-betas line up with the average returns to these 25 portfolios?
 - The factor risk-premia are generally left as free parameters to be estimated.

What the literature (mostly) does

from Daniel and Titman (2012):

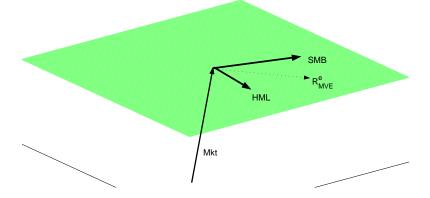
Paper	Factor(s)	Cond. Vars.			
Conditional (C)CAPM Models					
Ferson and Harvey (1999)	VW	S&P 500 Dividend Yield			
Lettau and Ludvigson (2001)	VW or Cons Growth	cay			
Santos and Veronesi (2005)	VW + Labor Income Growth	Labor Income to Cons Ratio (s)			
Petkova and Zhang (2005)	VW Index	$E[R_m]$ based on BC Vars			
Alternative-Factor Models					
Fama and French (1993)	VW, HML, SMB				
Jagannathan and Wang (1996)	Labor Income Growth	DEF			
Heaton and Lucas (2000)	Proprietary Income Growth				
Piazzesi, Schneider, and Tuzel	Cons Growth $+\Delta$ NH Expenditure	Non-Housing Expenditure Ratio			
(2007)	Ratio $(\Delta log(\alpha))$	(α)			
Lustig and Van Nieuwerburgh	Scaled Rental Price Change	Housing Collateral Ratio			
(2005)	$(A\Delta log \rho)$				
Aït-Sahalia, Parker, and Yogo	Luxury Good Consumption				
(2004)					
Li, Vassalou, and Xing (2006)	Sector Inv. Growth Rates				
Parker and Julliard (2005)	Innovations in Future Long Hori-				
` '	zon Consumption Growth				
Campbell and Vuolteenaho	CF and DR news				
(2004)					

• See also Dechow, Sloan, and Soliman (2004), Bansal, Dittmar, and Lundblad (2005), Ai and Kiku (2013), Kogan and Papanikolaou (2014), Da (2009), Chen (2017)

25 FF Portfolio R²s

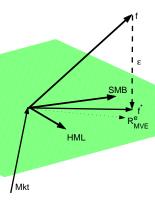
• Fama and French (1993) (Table 6) run time-series regressions for each of the 25 SZ/BM sorted portfolios:

$$R_{i,t} - RF_t = a + b \cdot (R_{m,t} - RF_t) + h \cdot HML_t + s \cdot SMB_t + \epsilon_t$$

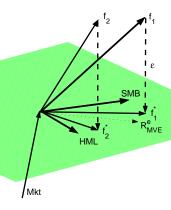

• The R^2 s are:

	Low	2	3	4	High
Small	0.94	0.96	0.97	0.97	0.96
2	0.95	0.96	0.95	0.95	0.96
3	0.95	0.94	0.93	0.93	0.93
4	0.94	0.93	0.91	0.89	0.89
Big	0.94	0.92	0.88	0.90	0.83

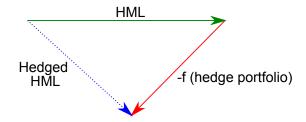
• In addition, the estimates of b range from 0.91 to 1.18 (std-dev = 0.06).


Return Space Geometry

• This means that the returns of these 25 portfolios, net of the market return, lie *approximately* in the 2-dimensional excess return space \mathbf{R}^{e*} spanned by HML and SMB:


Test Geometry

• In any test where the λ s are free parameters, a test of a single-factor model with the 25 FF portfolios is a test of whether $corr(f^*, R_{MVE}^e) = 1$



Test Geometry – multiple factors

- Moreover, with two factors, assuming $f_1^* \neq k \cdot f_2^*$, some linear combination of the \hat{f} s will always price the assets.
 - Any f_1^* and f_2^* form a basis for the subspace.

Test Geometry – with hedged factors

Testing New Asset Pricing Models

- This is a really good way of expanding the asset-return space.
 - likely more powerful than adding industry returns, etc.
- Any new factor model proposed as an explanation of the observed characteristic-premia should clearly be subjected to such a test.
- Given my priors, it doesn't surprise me that "standard" sources of macro risk are not priced.
- It would be interesting to see whether agent specific measures of risk are priced, e.g., the ICR measures proposed in the literature.
 - He and Krishnamurthy (2013), Adrian, Etula, and Muir (2014), He, Kelly, and Manela (2017), and others.

Why does this econometric exercise work?

- The individual stock covariance structure is relatively constant
 - That is, IBM's covariance with GOOG, and with innovations is productivity, is relatively constant over time.
- In contrast the covariance matrix of proposed "factor portfolios" (e.g., HML, SMB, UMD) is much less stable.
 - The makeup of the factor portfolios is constantly changing.
 - For example, IBM's covariance with UMD will depend on it's return over the past year
- Thus, to build a portfolio that is highly correlated with a macro variable, you should sort on lagged $\rho_{i,t}$ s, not on the characteristics used to build factor portfolios (like BM).

Econometric Issues

- In Daniel, Mota, Rottke, and Santos (2017), we follow Frazzini and Pedersen (2014) and estimate volatilities and correlations over different horizons.
- For us, this makes a substantial difference in the power to forecast future individual firm betas.
 - I suspect that this would improve the forecast power here as well.

References I

- Adrian, Tobias, Erkko Etula, and Tyler Muir, 2014, Financial intermediaries and the cross-section of asset returns, *The Journal of Finance* 69, 2557–2596.
- Ai, Hengjie, and Dana Kiku, 2013, Growth to value: Option exercise and the cross section of equity returns, Journal of Financial Economics 107, 325–349.
- Aït-Sahalia, Yacine, Jonathan A. Parker, and Motohiro Yogo, 2004, Luxury goods and the equity premium, Journal of Finance 59, 2959–3004.
- Bansal, Ravi, Robert F Dittmar, and Christian T Lundblad, 2005, Consumption, dividends, and the cross section of equity returns, The Journal of Finance 60, 1639–1672.
- Campbell, John Y., and Tuomo Vuolteenaho, 2004, Bad beta, good beta, American Economic Review 94, 1249–1275.
- Chen, Huafeng, 2017, Do cash flows of growth stocks really grow faster?, The Journal of Finance 72, 2279–2330.
- Da, Zhi, 2009, Cash flow, consumption risk, and the cross-section of stock returns, The Journal of Finance pp. 923–956.
- Daniel, Kent, Lira Mota, Simon Rottke, and Tano Santos, 2017, The cross section of risk and return, Columbia Business School working paper.
- Daniel, Kent D., and Sheridan Titman, 2012, Testing factor-model explanations of market anomalies. Critical Finance Review 1, 103–139.
- Dechow, Patricia M, Richard G Sloan, and Mark T Soliman, 2004, Implied equity duration: A new measure of equity risk, Review of Accounting Studies 9, 197–228.

References II

- Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and bonds, Journal of Financial Economics 33, 3–56.
- Ferson, Wayne E., and Campbell R. Harvey, 1999, Conditioning variables and the cross section of stock returns, *Journal of Finance* 54, 1325 1360.
- Frazzini, Andrea, and Lasse H. Pedersen, 2014, Betting against beta, *Journal of Financial Economics* 111, 1–25.
- He, Zhiguo, Bryan Kelly, and Asaf Manela, 2017, Intermediary asset pricing: New evidence from many asset classes, Journal of Financial Economics 126, 1–35.
- He, Zhiguo, and Arvind Krishnamurthy, 2013, Intermediary asset pricing, American Economic Review 103, 732–70.
- Heaton, John C., and Deborah J. Lucas, 2000, Portfolio choice and asset prices: The importance of entrepeneurial risk, Journal of Finance 55, 1163–1198.
- Jagannathan, Ravi, and Zhenyu Wang, 1996, The conditional CAPM and the cross-section of expected returns, Journal of Finance 51, 3-53.
- Kogan, Leonid, and Dimitris Papanikolaou, 2014, Growth opportunities, technology shocks, and asset prices, The journal of finance 69, 675–718.
- Lettau, Martin, and Sydney Ludvigson, 2001, Resurrecting the (C)CAPM: A cross-sectional test when risk premia are time-varying, Journal of Political Economy 109, 1238–1287.
- Lewellen, Jonathan, Stefan Nagel, and Jay Shanken, 2010, A skeptical appraisal of asset pricing tests, Journal of Financial Economics 96, 175–194.

References III

- Li, Qing, Maria Vassalou, and Yuhang Xing, 2006, Sector investment growth rates and the cross section of equity returns, *Journal of Business* 79, 1637–1665.
- Lustig, Hanno N., and Stijn G. Van Nieuwerburgh, 2005, Housing collateral, consumption insurance, and risk premia: An empirical perspective, The Journal of Finance 60, 1167–1219.
- Parker, Jonathan A., and Christian Julliard, 2005, Consumption risk and the cross section of expected returns, *Journal of Political Economy* 113, 185–222.
- Petkova, Ralitsa, and Lu Zhang, 2005, Is value riskier than growth?, Journal of Financial Economics 78, 187–202.
- Piazzesi, Monika, Martin Schneider, and Selale Tuzel, 2007, Housing, consumption and asset pricing, *Journal of Financial Economics* 83, 531–569.
- Santos, Tano, and Pietro Veronesi, 2005, Labor income and predictable stock returns, Review of Financial Studies 19, 1–44.