Summary npirical Analysis

Discussion of: Asset Prices with Fading Memory Stefan Nagel and Zhengvang Xu

Kent Daniel[†]

[†]Columbia Business School & NBER

2018 Fordham Rising Stars Conference May 11, 2018

Introduction

- The paper has two distinct parts:
 - a simple model with some empirical work
 - a more sophisticated Bayesian learning model.
- I'm going to concentrate on the first part.
- In both models agents learn the underlying cashflow growth rate by observing realized cashflow growth rates.
 - As a result of experiential learning, investors overreact to recent growth rates.
 - Agents get no other information.
- I'm going to argue that you need other shocks to explain market returns.

Basic Model - Cash flow process

• The cashflow C_t from the endowment (market) follows GBM with constant drift μ :

$$\Delta c_t = \mu + \epsilon_t$$

where
$$c_t = \log(C_t)$$
 and $\epsilon_t \sim iid \ \mathcal{N}(0, \sigma_c^2)$

• However, based on Malmendier and Nagel (2016), the average

$$\tilde{\mu}_{t+1} = \tilde{\mu}_t + \nu \left(\Delta c_{t+1} - \tilde{\mu}_t \right)$$

- MN (2016) estimate $\nu = 0.018/\text{quarter}$ for inflation data.
- implying that:

$$\tilde{\mu}_t = \sum_{j=0}^{\infty} \underbrace{\nu(1-\nu)^j}_{w_i} \Delta c_{t-j}$$

Basic Model - Cash flow process

• The cashflow C_t from the endowment (market) follows GBM with constant drift μ :

$$\Delta c_t = \mu + \epsilon_t$$

where $c_t = \log(C_t)$ and $\epsilon_t \sim iid \mathcal{N}(0, \sigma_s^2)$

• However, based on Malmendier and Nagel (2016), the average agent's belief about μ , $\tilde{\mu}$, follows:

$$\tilde{\mu}_{t+1} = \tilde{\mu}_t + \nu \left(\Delta c_{t+1} - \tilde{\mu}_t \right)$$

- MN (2016) estimate $\nu = 0.018/\text{quarter}$ for inflation data.
- implying that:

$$\tilde{\mu}_t = \sum_{j=0}^{\infty} \underbrace{\nu(1-\nu)^j}_{w_j} \Delta c_{t-j}$$

Basic Model - Cash flow process

• The cashflow C_t from the endowment (market) follows GBM with constant drift μ :

$$\Delta c_t = \mu + \epsilon_t$$

where $c_t = \log(C_t)$ and $\epsilon_t \sim iid \ \mathcal{N}(0, \sigma_c^2)$

• However, based on Malmendier and Nagel (2016), the average agent's belief about μ , $\tilde{\mu}$, follows:

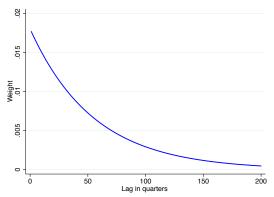
$$\tilde{\mu}_{t+1} = \tilde{\mu}_t + \nu \left(\Delta c_{t+1} - \tilde{\mu}_t \right)$$

- MN (2016) estimate $\nu = 0.018/\text{quarter}$ for inflation data.
- implying that:

$$\tilde{\mu}_t = \sum_{j=0}^{\infty} \underbrace{\nu(1-\nu)^j}_{w_i} \Delta c_{t-j}$$

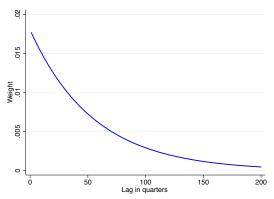
Weighting Function, $\nu = 0.018$

• That is, $\tilde{\mu}_t = \sum_{i=0}^{\infty} w_j \Delta c_{t-j}$, where w_j looks like:



• half life is $\frac{\log(0.5)}{\log(1-\nu)} = 38.2$ quarters (~ 10 years) • $\nu \to 0 \Rightarrow$ "rationality" (i.e., no "fading")

• That is, $\tilde{\mu}_t = \sum_{i=0}^{\infty} w_j \Delta c_{t-j}$, where w_j looks like:



- \bullet half life is $\frac{\log(0.5)}{\log(1-\nu)}=38.2$ quarters ($\sim 10~{\rm years})$
 - $\nu \to 0 \Rightarrow$ "rationality" (i.e., no "fading")

Basic Model - Pricing

• Representative agent in model sets price to equal PV of future CFs, using constant discount rate of

$$\tilde{\mathbb{E}}_t r_{t+1} = \theta + r_f$$

- However, agent (mistakenly) extrapolates recent cashflow growth to infer μ .
- Using a Campbell and Shiller (1988) log-linearization:

$$r_{t+1} - \tilde{\mathbb{E}}_t r_{t+1} = \left(1 + \left(\frac{\rho}{1-\rho}\right)\nu\right) \left(\Delta c_{t+1} - \tilde{\mu}_t\right)$$

$$\mathbb{E}_{t} r_{t+1} - \underbrace{\tilde{\mathbb{E}}_{t} r_{t+1}}_{r_{t}+\theta} = \left(1 + \left(\frac{\rho}{1-\rho}\right) \nu\right) \left(\mu - \tilde{\mu}_{t}\right)$$

Basic Model - Pricing

• Representative agent in model sets price to equal PV of future CFs, using constant discount rate of

$$\tilde{\mathbb{E}}_t r_{t+1} = \theta + r_f$$

- However, agent (mistakenly) extrapolates recent cashflow growth to infer μ .
- Using a Campbell and Shiller (1988) log-linearization:

$$r_{t+1} - \tilde{\mathbb{E}}_t r_{t+1} = \left(1 + \left(\frac{\rho}{1-\rho}\right)\nu\right) \left(\Delta c_{t+1} - \tilde{\mu}_t\right)$$

$$\mathbb{E}_{t} r_{t+1} - \underbrace{\tilde{\mathbb{E}}_{t} r_{t+1}}_{r_{t}+\theta} = \left(1 + \left(\frac{\rho}{1-\rho}\right) \nu\right) \left(\mu - \tilde{\mu}_{t}\right)$$

Basic Model - Pricing

 Representative agent in model sets price to equal PV of future CFs, using constant discount rate of

$$\tilde{\mathbb{E}}_t r_{t+1} = \theta + r_f$$

- However, agent (mistakenly) extrapolates recent cashflow growth to infer μ .
- Using a Campbell and Shiller (1988) log-linearization:

$$r_{t+1} - \tilde{\mathbb{E}}_t r_{t+1} = \left(1 + \left(\frac{\rho}{1-\rho}\right)\nu\right) \left(\Delta c_{t+1} - \tilde{\mu}_t\right)$$

and

$$\mathbb{E}_{t} r_{t+1} - \underbrace{\tilde{\mathbb{E}}_{t} r_{t+1}}_{r_{t}+\theta} = \left(1 + \left(\frac{\rho}{1-\rho}\right) \nu\right) (\mu - \tilde{\mu}_{t})$$

implying a negative relationship between recent cashflow growth and future abnormal returns.

- The authors don't use cashflows to estimate $\tilde{\mu}_t$.
- They instead use historical returns on the market. Effectively, $\tilde{\mu}_{r,t} = \sum_{j=0}^{\infty} w_j r_{t-j}$
- Reasons:
 - To start in 1926, would need consumption going back to 1876.
 - \odot "... dividends are influenced by shifts in payout policy that can distort estimates of $\tilde{\mu}$ constructed from dividend growth rates."
 - **3** The authors simulate $\tilde{\mu}$ and $\tilde{\mu}_r$ (under the null) and show that they are highly correlated.
- A concern is that price shocks will reflect all information prices/discount rates.
 - How can we confirm the information that is causing $\mathbb{E}[r]$ s to change is cashflow innovations?

Estimating $\tilde{\mu}_t$

- The authors don't use cashflows to estimate $\tilde{\mu}_t$.
- They instead use historical returns on the market. Effectively, $\tilde{\mu}_{r,t} = \sum_{j=0}^{\infty} w_j r_{t-j}$
- Reasons:
 - To start in 1926, would need consumption going back to 1876.
 - ② "...dividends are influenced by shifts in payout policy that can distort estimates of $\tilde{\mu}$ constructed from dividend growth rates."
 - **3** The authors simulate $\tilde{\mu}$ and $\tilde{\mu}_r$ (under the null) and show that they are highly correlated.
- A concern is that price shocks will reflect all information prices/discount rates.
 - How can we confirm the information that is causing $\mathbb{E}[r]$ s to change is cashflow innovations?

DP decomposition

- I'll show a set of regressions. Data is from Shiller, over the 1946-2014 sample.
- The dependent variable is always the annual real returns on the S&P 500 (R_{t+1})
- The forecasting variables I'll use are:
 - **1** dp: log of preceding year's dividend (D_t) , scaled by this year's price (P_t)
 - 2 dpL: dp, lagged 10 years.
 - 3 Δd : change in the log dividend over the last 10 years.
 - **4** Δp : change in the log price over the last 10 years.
 - **6** S: Baker and Wurgler (2000) equity share

Dep. Variable:		R R-sq	uared:		0.066
Model:		OLS Adj.	R-squared:		0.052
No. Observations:		67 AIC:			-51.62
Df Residuals:		65 BIC:			-47.21
Df Model:		1			
Covariance Type:		HAC			
coe	f std err	z	P> z	[0.025	0.975]
const 0.416	5 0.157	2.657	0.008	0.109	0.724
dp 0.098	3 0.046	2.128	0.033	0.008	0.189

=========							
Dep. Variable	e:		R	R-sq	uared:		0.026
Model:			OLS	Adj.	R-squared:		0.011
Method:		Least S	Squares	F-sta	atistic:		2.210
Date:		Thu, 10 Ma	y 2018	Prob	(F-statisti	.c):	0.142
Time:		09	9:57:50	Log-	Likelihood:		26.393
No. Observati	ions:		67	AIC:			-48.79
Df Residuals:			65	BIC:			-44.38
Df Model:			1				
Covariance Ty	pe:		HAC				
=========							
	coe	f std e	r	z	P> z	[0.025	0.975]
	0.050			0 676	0.007	0.016	0.100
const	0.0588			2.676	0.007	0.016	0.102
Delta-d	0.125	4 0.08	34	1.487	0.137	-0.040	0.291

- the point estimate on the Δd coefficient is positive, not negative.
 - However, it is statistically insignificant.

dp decomposition

• Consider the identity (like that in Daniel and Titman (2006)):

$$dp_t = dp_{t-10} + \Delta d_{t-10,t} - \Delta p_{t-10,t}$$

- \bullet In words, if the market has a high dp today, there are three possibilities:
 - \bullet It was high dp 10 years ago.
 - $\triangle d$ was positive.
 - \bullet Δp was negative.
- At least post-WWII, dp forecasts the market.
 - Which of the three components forecasts the market?

Dep. Variabl	e:		R	R-sq	lared:		0.111
Model:			OLS	Adj.	R-squared:		0.069
Method:		Least Squ	ares	F-sta	atistic:		2.882
Date:		Thu, 10 May	2018	Prob	(F-statistic)	:	0.0427
Time:		09:5	7:50	Log-I	Likelihood:		29.465
No. Observat	ions:		67	AIC:			-50.93
Df Residuals	3:		63	BIC:			-42.11
Df Model:			3				
Covariance T	Type:		HAC				
=========			=====	=====			========
	coef	std err		z	P> z	[0.025	0.975]
const	0.4635	0.165		 2.814	0.005	0.141	0.786
dpL	0.1192			2.353	0.019	0.020	0.219
Delta-d	0.2698			2.300	0.021	0.040	0.500
Delta-p	-0.1077			2.123	0.034	-0.207	-0.008
=========		========	=====	======		=======	========

- Note that the coefficient on Δd is again positive, and now statistically significant.
 - Suggests that Δd is not just "noise" w.r.t returns.

dp decomposition

• We can also break the market "return" into the part explained by cashflow changes, and the component that isn't (ϵ) .

$$\Delta p_{t-10,t} = a \cdot dp_{t-10} + b \cdot \Delta d_{t-10,t} + \epsilon_{t-10,t}$$

- $\epsilon_{t-10,t}$ is the price change over the last 10 years that can't be explained by the growth rate of dividends.
 - The regression $R_{adj}^2 = 51.4\%$
 - t(b=0)=6.7.

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Typ	ons:	Least Squar Thu, 10 May 20 10:45	DLS Adj. res F-st 018 Prob		:):	0.529 0.514 30.51 4.94e-10 -29.072 64.14 70.76
=========	coef	std err	z	P> z	[0.025	0.975]
const dpL Delta-d	1.7185 0.4961 1.4854	0.357 0.109 0.221	4.808 4.537 6.734	0.000 0.000 0.000	1.018 0.282 1.053	2.419 0.710 1.918

•
$$R_{adi.}^2 = 51.4\% \Rightarrow \rho \approx 0.7$$
,

=========									
Dep. Variable	e:		R R-sc	uared:		0.111			
Model:			OLS Adj.	R-squared:		0.069			
Method:		Least Squ	ares F-st	atistic:		2.882			
Date:	T	hu, 10 May	2018 Prob	(F-statistic	:):	0.0427			
Time:		11:2	1:31 Log-	Likelihood:		29.465			
No. Observat:	ions:		67 AIC:			-50.93			
Df Residuals	:		63 BIC:			-42.11			
Df Model:			3						
Covariance Ty	ype:		HAC						
	coef	std err	Z	P> z	[0.025	0.975]			
const	0.2784	0.137	2.030	0.042	0.010	0.547			
dpL	0.0658	0.043	1.544	0.123	-0.018	0.149			
Delta-d	0.1098	0.083	1.328	0.184	-0.052	0.272			
resid	-0.1077	0.051	-2.123	0.034	-0.207	-0.008			

- The coefficient on *resid* is exactly the same as in the previous regression.
- The coefficients on dp_{t-10} and Δd are what they would be were resid not included in the regression.

========	=======		=======			
Dep. Variab	le:		R R-	squared:		0.166
Model:			OLS A	lj. R-squared:		0.104
Method:		Least Sq	uares F-	statistic:		2.878
Date:		Thu, 10 May	2018 Pi	ob (F-statist	ic):	0.0311
Time:		09:	57:51 Lo	g-Likelihood:		28.634
No. Observat	tions:		59 A	C:		-47.27
Df Residuals	3:		54 B	C:		-36.88
Df Model:			4			
Covariance '	Гуре:		HAC			
	coet	f std err		z P> z	[0.025	0.975]
const	0.6982	2 0.227	3.07	7 0.002	0.253	1.143
dpL	0.158				0.024	0.293
Delta-d	0.3394				0.021	0.583
Delta-p	-0.1589				-0.272	-0.046
S	-0.5252				-1.079	0.029

References I

- Baker, Malcolm, and Jeffrey Wurgler, 2000, The equity share in new issues and aggregate stock returns, *Journal of Finance* 55, 2219–2257.
- Campbell, John Y., and Robert J. Shiller, 1988, The dividend-price ratio and expectations of future dividends and discount factors, *Review of Financial Studies* 1, 195–228.
- Daniel, Kent D., and Sheridan Titman, 2006, Market reactions to tangible and intangible information, *Journal of Finance* 61, 1605–1643.