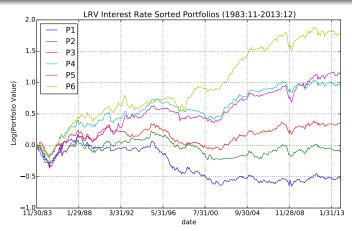
Discussion of:

The Mystery of Currency Betas

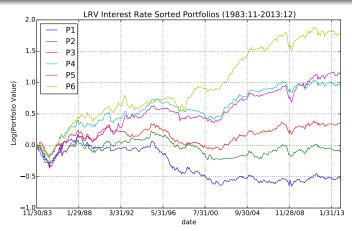
by: Steven J. Riddiough

Kent Daniel[†]

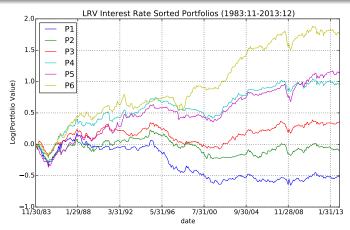
[†]Columbia University, Graduate School of Business


2015 AFA Meetings 5 January, 2015

The Carry Trade


- The carry trade has long been a puzzle in asset pricing.
- Let's look at the data from Lustig, Roussanov, and Verdelhan (2011), who sort 35 currencies into six portfolios (P1-P6) based on currency interest rates relative to the dollar interest rate.

LRV Portfolios – Cumulative Returns


- P1 final value is \$0.60; P6 final value is \$5.84
- $t(\bar{R}_{HML_{FX}} = 0) = 4.77$; $SR_{HML_{FX}} = 0.87$ (annualized)

LRV Portfolios – Cumulative Returns

- P1 final value is \$0.60; P6 final value is \$5.84
- $t(R_{HML_{FX}} = 0) = 4.77$; $SR_{HML_{FX}} = 0.87$ (annualized)

LRV Portfolios – Cumulative Returns

- P1 final value is \$0.60; P6 final value is \$5.84
- $t(\bar{R}_{HML_{FX}} = 0) = 4.77$; $SR_{HML_{FX}} = 0.87$ (annualized)

LRV Factors

- Lustig, Roussanov, and Verdelhan (2011) also find that two return-based risk factors "explain" the cross-section of currency returns:
 - R_{RX}: the cross-sectional average return on all six currency portfolios.
 - R_{HML_{FX}}: the difference in the returns on portfolio 6 and portfolio 1.

Asset Return Space

						Panel	: Factor Betas						
			ll Countries			Developed Countries							
Portfolio	a_0^j	$\beta^{j}_{HML_{FX}}$	β_{RX}^{j}	R^2	$\chi^2(\alpha)$	p-value		a_0^j	$\beta^j_{HML_{FX}}$	β_{RX}^{j}	R^2	$\chi^2(\alpha)$	p-value
1	-0.10 [0.50]	-0.39 [0.02]	1.05	91.64				0.36	-0.51 [0.03]	0.99	94.31		
2	-1.55 [0.73]	-0.11 [0.03]	0.94 [0.04]	77.74				-1.17 [0.85]	-0.09 [0.04]	1.01 [0.04]	80.69		
3	-0.54 [0.74]	-0.14 [0.03]	0.96	76.72				0.62	-0.00 [0.03]	1.04	86.50		
4	1.51 [0.77]	-0.01 [0.03]	0.95 [0.05]	75.36				-0.17 [0.85]	0.12 [0.03]	0.97 [0.04]	82.84		
5	0.78	0.04	1.06	76.41				0.36	0.49	0.99	94.32		
6	-0.10 [0.50]	0.61	1.05	93.84									
All					6.79	34.05%						2.63	75.64%

Note that:

- the R^2 s for these time-series regressions are 75%-94% (81%-94% for developed currencies).
- ullet There is considerable variation in $eta_{\mathit{HML}_{\mathit{EX}}}^{j}$
- $\beta_{RX}^{j} \approx 1$ for all portfolios.

Economic Factor Models

• In the absence of arbitrage, all excess returns R_{t+1} are priced by a stochastic discount factor (pricing kernel) \tilde{m} such that:

$$E_t[\tilde{m}_{t+1}\tilde{R}_{t+1}]=0$$

or, equivalently,

$$E_t[\tilde{R}_{t+1}] = -cov(\tilde{m}_{t+1}, \tilde{R}_{t+1}).$$

where $E_t[\tilde{m}_{t+1}] = 1$.

- For rational investors, and in the absence of frictions, \tilde{m}_{t+1} is the ratio of marginal utilities at time t+1 and time t.
 - This equation is just the FOC for investor optimization

Economic Factor Models

• In the absence of arbitrage, all excess returns R_{t+1} are priced by a stochastic discount factor (pricing kernel) \tilde{m} such that:

$$E_t[\tilde{m}_{t+1}\tilde{R}_{t+1}]=0$$

or, equivalently,

$$E_t[\tilde{R}_{t+1}] = -cov(\tilde{m}_{t+1}, \tilde{R}_{t+1}).$$

where $E_t[\tilde{m}_{t+1}] = 1$.

- For rational investors, and in the absence of frictions, \tilde{m}_{t+1} is the ratio of marginal utilities at time t+1 and time t.
 - This equation is just the FOC for investor optimization.

Economic Factor Models

• Thus, it should be possible to link \tilde{m} to a set of factors which proxy for innovations in marginal utility:

$$\tilde{m}_{t+1} = a_t + \mathbf{b}_t' \, \tilde{\mathbf{f}}_{t+1}$$

 For this reason, a number of macro-finance researchers have proposed macro-based models which deliver a pricing kernel which can "explain" the premia interest-rate sorted portfolios.

- Rare Disasters
 - Farhi and Gabaix (2008):
- 4 Habit-Based Explanation Consumption/Surplus Ratio
 Wardelbar (2010)
- Share of World Consumption (SWC)
 - Colciato and Croce (2013)

- Each of the 6 financial risk factors are found to be priced,
 with the t-statistic over 3.0 for the composite financial risk.
- Each of the 6 macro risk factors have t > 2.0; for four factors, t > 3.0.

- Rare Disasters
 - Farhi and Gabaix (2008):
- 4 Habit-Based Explanation Consumption/Surplus Ratio
 - Verdelhan (2010)
- Share of World Consumption (SWC)
 - Colciato and Croce (2013)

- Each of the 6 financial risk factors are found to be priced,
 with the t-statistic over 3.0 for the composite financial risk.
- Each of the 6 macro risk factors have t > 2.0; for four factors, t > 3.0.

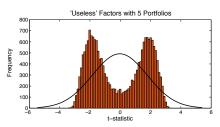
- Rare Disasters
 - Farhi and Gabaix (2008):
- 4 Habit-Based Explanation Consumption/Surplus Ratio
 - Verdelhan (2010)
- Share of World Consumption (SWC)
 - Colciato and Croce (2013)

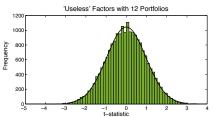
- Each of the 6 financial risk factors are found to be priced,
 with the t-statistic over 3.0 for the composite financial risk.
- Each of the 6 macro risk factors have t > 2.0; for four factors, t > 3.0.

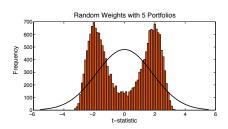
- Rare Disasters
 - Farhi and Gabaix (2008):
- Habit-Based Explanation Consumption/Surplus Ratio
 - Verdelhan (2010)
- Share of World Consumption (SWC)
 - Colciato and Croce (2013)

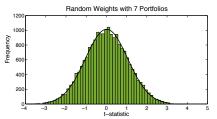
- Each of the 6 financial risk factors are found to be priced, with the t-statistic over 3.0 for the composite financial risk
- Each of the 6 macro risk factors have t > 2.0; for four factors, t > 3.0.

- Rare Disasters
 - Farhi and Gabaix (2008):
- 4 Habit-Based Explanation Consumption/Surplus Ratio
 - Verdelhan (2010)
- Share of World Consumption (SWC)
 - Colciato and Croce (2013)


- Each of the 6 financial risk factors are found to be priced, with the t-statistic over 3.0 for the composite financial risk.
- Each of the 6 macro risk factors have t > 2.0; for four factors, t > 3.0.




- Rare Disasters
 - Farhi and Gabaix (2008):
- 4 Habit-Based Explanation Consumption/Surplus Ratio
 - Verdelhan (2010)
- Share of World Consumption (SWC)
 - Colciato and Croce (2013)


- Each of the 6 financial risk factors are found to be priced, with the t-statistic over 3.0 for the composite financial risk.
- Each of the 6 macro risk factors have t > 2.0; for four factors, t > 3.0.

This Paper's Approach

Economically Motivated Explanations

- The finding that there are a number of weakly correlated factors, all of which seem to "explain" the carry trade, is reminiscent of the literature on economic explanations of the value premium (for equities).
- I'm going to present some results from Daniel and Titman (2012) that dealt with this topic, with the goal of explaining this puzzling result from a slightly different point of view.

Economically Motivated Explanations

Paper	Factor(s)	Cond. Vars.						
Conditional (C)CAPM Models								
Ferson and Harvey (1999)	VW	S&P 500 Dividend Yield						
Lettau and Ludvigson (2001)	VW or Cons Growth	cay						
Santos and Veronesi (2005)	VW + Labor Income Growth	Labor Income to Cons Ratio (s)						
Alternative-Factor Models								
Fama and French (1993)	VW, HML, SMB							
Jagannathan and Wang (1996)	Labor Income Growth	DEF						
Heaton and Lucas (2000)	Proprietary Income Growth							
Piazzesi, Schneider, and Tuzel (2007)	Cons Growth $+\Delta$ NH Expenditure Ratio $(\Delta log(\alpha))$	Non-Housing Expenditure Ratio (α)						
Lustig and Nieuwerburgh (2002)	Scaled Rental Price Change $(A\Delta log \rho)$	Housing Collateral Ratio						
Aït-Sahalia, Parker, and Yogo (2004)	Luxury Good Consumption							
Li, Vassalou, and Xing (2006)	Sector Inv. Growth Rates							
Parker and Juillard (2003)	Innovations in Future Long Horizon							
, ,	Consumption Growth							
Campbell and Vuolteenaho (2004)	CF and DR news							

Too Many Explanations?

- Given this equivalence, and based on the results of these studies, there are more than a dozen factors that appear to "explain" the value effect.
- Interestingly, it turns out that the proposed factors and scaled factors are not highly correlated.

Candidate Factor Sample Correlations

- Sample Correlation Matrix for Candidate Factors
 - Quarterly Data; 1963Q4:1998Q3

	HML	$DP \cdot r_m$	cay∙r _m	$s \cdot r_m$	$\widehat{\operatorname{cay}} \cdot \Delta c$	Δy	Δ (prop)	$\Delta \log(\alpha)$	N_{CF}
HML	1	-0.10	0.07	-0.05	0.06	0.01	0.07	0.11	0.27
$\mathrm{DP}\!\cdot\!r_m$	-0.10	1	0.61	0.37	0.14	-0.01	0.04	0.00	-0.09
$\widehat{\operatorname{cay}} \cdot r_m$	0.07	0.61	1	0.03	0.12	-0.03	-0.16	-0.00	-0.12
s·r _m	-0.05	0.37	0.03	1	0.07	0.03	0.14	-0.07	0.07
$\widehat{\operatorname{cay}} \cdot \Delta c$	0.06	0.14	0.12	0.07	1	0.13	0.10	-0.07	0.06
Δy	0.01	-0.01	-0.03	0.03	0.13	1	0.25	0.15	-0.10
Δ (prop)	0.07	0.04	-0.16	0.14	0.10	0.25	1	0.28	0.11
$\Delta \log(\alpha)$	0.11	0.00	-0.00	-0.07	-0.07	0.15	0.28	1	0.09
N _{CF}	0.27	-0.09	-0.12	0.07	0.06	-0.10	0.11	0.09	1

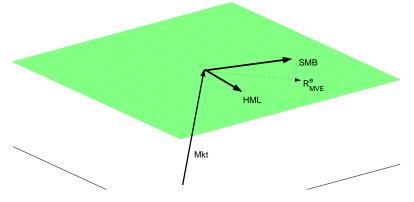
- Why do each of these factor explanations seems to "work?"
 - That is, they fail to reject the proposed factor model.
- The surprising answer is that this is because they are all correct.

Return Space Geometry

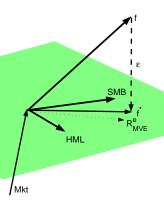
 Fama and French (1993) (Table 6) run time-series regressions for each of the 25 SZ/BM sorted portfolios:

$$\tilde{R}_{i,t} - RF_t = a + b \cdot (\tilde{R}_{m,t} - RF_t) + h \cdot H\tilde{M}L_t + s \cdot S\tilde{M}B_t + \tilde{\epsilon}_t$$

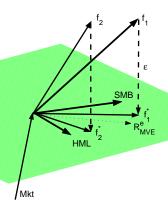
• The R²s are:


	Low	2	3	4	High
Small	0.94	0.96	0.97	0.97	0.96
2	0.95	0.96	0.95	0.95	0.96
3	0.95	0.94	0.93	0.93	0.93
4	0.94	0.93	0.91	0.89	0.89
Big	0.94	0.92	0.88	0.90	0.83

 In addition, the estimates of b range from 0.91 to 1.18 (std-dev = 0.06).


Return Space Geometry

 This means that the returns of these 25 portfolios, net of the market return, lie approximately in a 2-dimensional excess return space R^{e*} spanned by HML and SMB:


Test Geometry

 In any test where the λs are free parameters, a test of a single-factor model with the 25 FF portfolios is a test of whether corr(f*, R^e_{MVF}) = 1

Multiple Factors

- Moreover, with two factors, assuming $f_1^* \neq k \cdot f_2^*$, some linear combination of the \tilde{f} s will always price the assets.
 - Any f_1^* and f_2^* form a basis for the subspace.

A More Powerful Test

The problem is that any b'f such that

$$\mathbf{b}'\tilde{\mathbf{f}} = \tilde{R}^e_{MVE} + \tilde{\epsilon}$$
, for $\epsilon \perp \text{HML}$, SMB

will price the 25 portfolios.

- However, some caveats are:
 - Again, the space is only approximately 2-dimensional.
 - Ridiculous factor risk premia (λs) may be required.
- Thus, to increase the power of the test, the test asset space must be augmented in the direction of ϵ .

Test Power

- Any test of an asset pricing model is a test of whether the vector of pricing errors of a set of portfolios (α) is zero.
- The usual way to test this set of moment restrictions is to form the test statistic:

$$\hat{\alpha}'\Omega\hat{\alpha}$$
.

which is asymptotically central $\chi^{\rm 2}$ distributed under the null hypothesis

• Under the alternative hypothesis, it is non-central χ^2 with NCP $\alpha'_{\rm A}\Omega\alpha_{\rm A}$.

References I

Aitsahalia, Yacine, Jonathan A. Parker, and Motohiro Yogo, 2004, Luxury goods and the equity premium, *Journal of* Finance 59, 2959-3004.

Campbell, John Y., and Tuomo Vuolteenaho, 2004, Bad beta, good beta, American Economic Review 94, 1249-1275

Daniel, Kent D., and Sheridan Titman, 2012, Testing factor-model explanations of market anomalies, Critical Finance Review 1, 103-139.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and bonds, Journal of Financial Economics 33, 3-56.

Fami. Emmanuel, and Xavier Gabaix, 2008, Rare disasters and exchange rates, NBER Working Paper.

Flesson, Wayne E., and Campbell R. Harvey, 1999, Conditioning variables and the cross section of stock returns, Journal of Finance 54, 1325 - 1360.

Heaton, John C., and Deborah J. Lucas, 2000, Portfolio choice and asset prices: The importance of entrepeneurial risk. Journal of Finance 55, 1163-1198.

Jagannathan, Ravi, and Zhenyu Wang, 1996, The conditional CAPM and the cross-section of expected returns, Journal of Finance 51, 3-53,

Lettau, Martin, and Sydney Ludvigson, 2001, Resurrecting the (C)CAPM: A cross-sectional test when risk premia are time-varying, Journal of Political Economy 109, 1238-1287.

References II

Linding, Maria Vassalou, and Yuhang Xing, 2006, Sector investment growth rates and the cross section of equity returns, Journal of Business 79, 1637-1665.

Lustig, Hanno, and Stijn Van Nieuwerburgh, 2002, Housing collateral, consumption insurance and risk premia, University of Chicago working paper.

Lustia, Hanno N., Nikolai L. Roussanov, and Adrien Verdelhan, 2011, Common risk factors in currency markets, Review of Financial Studies 24, 3731-3777 NBER Working Paper.

Plazzesi, Monika, Martin Schneider, and Selale Tuzel, 2007, Housing, consumption and asset pricing, Journal of Financial Economics 83, 531-569.

Santos, Tano, and Pietro Veronesi, 2005, Labor income and predictable stock returns, Review of Financial Studies 19, 1-44.