Discussion of:

Time Varying Market Efficiency

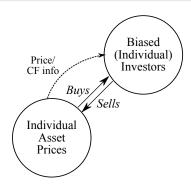
by:

Ferhat Akbas, Will J. Armstrong, Sorin Sorescu and Avanidhar Subrahmanyam

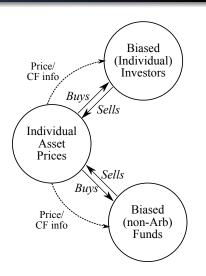
Kent Daniel†

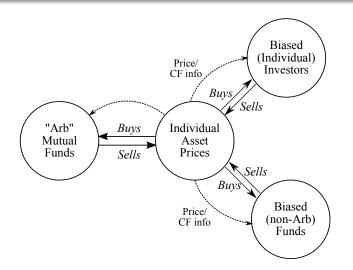
†Columbia University, Graduate School of Business

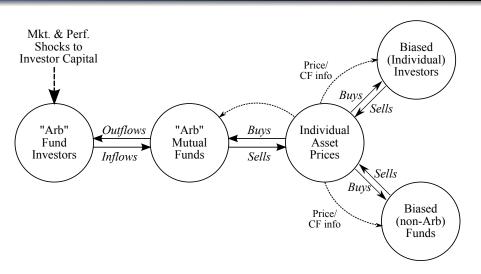
AFA Annual Meetings 4 January, 2013

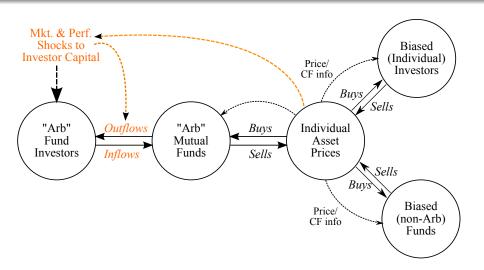


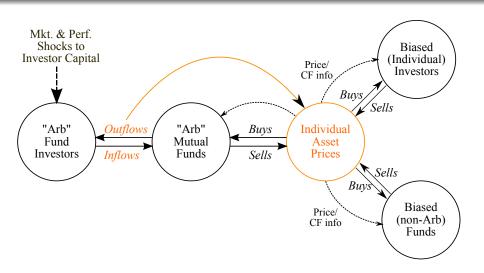
Outline


- Summary & Model
- Related Empirical Results

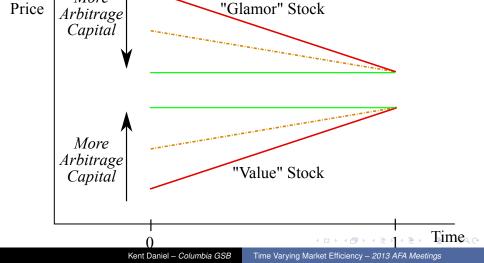

Anomalies "Model"


Basic Model

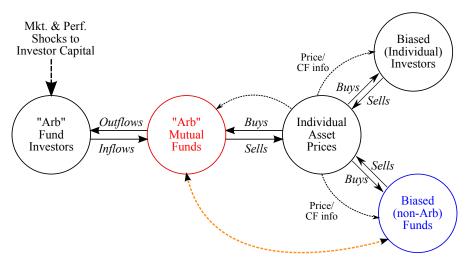

Basic Model - Arbitrage


Basic Model - Arbitrage Capital

Flow-Arbitrage Constraint Tests



Fund Flows-Future AMTS Returns Tests



Fund Flows-Future AMTS Returns Tests

More

Discriminating Between Arb and Non-Arb Funds

AMTS Speicification

The Actively-Managed Trading Strategy (AMTS) is essentially an industry-neutral strategy utilizing four well known anomalies:

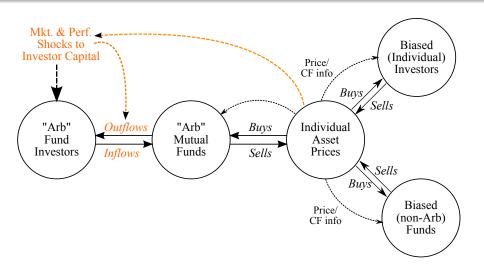
- Value (B/P) Rosenberg, Reid, and Lanstein (1985), Chan, Hamao, and Lakonishok (1991), Fama and French (1992).
- Momentum Jegadeesh and Titman (1993)
- Profitability Haugen and Baker (1996); Cohen, Gompers, and Vuolteenaho (2001); Fama and French (2008)
- Short-Term Reversal Jegadeesh (1990); Lehmann (1990).

High β_{AMTS} Funds

- The authors determine the identity of "Arb" funds based on their beta w.r.t. the past 60 monthly returns to the AMTS.
- Several things would be useful here
 - What are the ex-post loadings on the AMTS returns of the arb and non-arb funds?
 - Are there any distinguishing funds characteristics?
 - What are the fund β s on the four components of AMTS
 - Are any particularly strong?

High β_{AMTS} Funds

- The authors determine the identity of "Arb" funds based on their beta w.r.t. the past 60 monthly returns to the AMTS.
- Several things would be useful here:
 - What are the ex-post loadings on the AMTS returns of the arb and non-arb funds?
 - Are there any distinguishing funds characteristics?
 - What are the fund β s on the four components of AMTS
 - Are any particularly strong?


Performance Based Constraints

- AMTS $\equiv r_{\text{AMTS}}(t-2, t-1)$: The return to the AMTS over the preceding two months.
- NSTD $\equiv \sigma_{\rm AMTS}^{-}(t-2,t-1)$: the Negative STandard-Deviation of daily AMTS returns over the preceding two months.

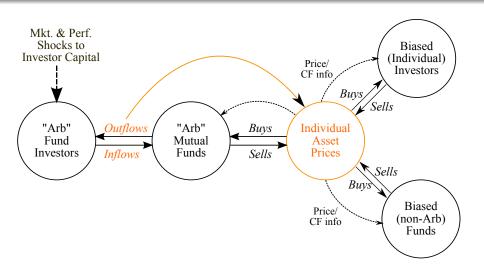
Market Based Constraints

- 1-MONTH LIBOR
- 3-MONTH TED SPREAD
- CRDSPRD $\equiv y_{\text{BAAA}} y_{\text{AAA}}$
- AGGIVOL $\equiv \bar{\sigma}_{\epsilon}$: The average idiosyncratic volatility for NYSE common stocks.
- Retdisp $\equiv \bar{\sigma}_{xsec}$: the cross-sectional return standard deviation of largest 10% of NYSE common stocks.

Flow-Arbitrage Constraint Tests

Table 5A

Dependent Variable: MFFLOW(t)


Independent variables are measured as the average over the [t-2,t-1] window

Variable			:	1991-2009			
AMTS	0.081		0.121	0.070	0.069	0.051	0.055
	2.10		2.54	2.02	1.85	1.44	1.50
NSTD		-2.320					
		-2.52					
LIBOR			-2.376				
			-1.64				
TED3				-0.008			
				-2.71			
CRDSPRD					-0.190		
					-0.94		
AGGIVOL						-1.156	
						-3.67	
RETDISP							-0.232
							-4.43
MFFLOWX	-0.132	-0.049	0.093	-0.025	-0.146	0.043	0.031
	-0.48	-0.17	0.26	-0.08	-0.53	0.16	0.11
RM-RF	0.094	0.067	0.107	0.063	0.087	0.043	0.055
	2.86	3.57	2.84	2.76	3.12	2.16	2.61
AILLIQ	0.082	0.080	0.106	0.072	0.080	0.097	0.070
	1.68	1.67	2.04	1.47	1.61	2.07	1.59
INTERCEPT	0.002	0.010	0.007	0.007	0.004	0.022	0.019
	0.75	3.08	1.70	2.28	1.09	4.20	4.92
Adj-R2	0.067	0.116	0.108	0.103	0.066	0.164	0.196
					4 □ 1	· 4 🗗 > 4	3 1 4 3

Table 5A

- By far the strongest predictors of flows to Arb funds are the individual security volatility measures.
- However, it seems like shocks to the "market" constraints should also drive flows to non-arb funds
 - Is this the case?
- It seems like what is important here is differential shocks to the capital of Arb. vs. non-Arb funds.

Fund Flows-Future AMTS Returns Tests

Table 7A

Dependent Variable: AMTS(t)

Independent variables are measured as the average over the [t-2,t-1] window

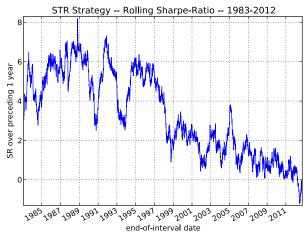

Variable	1991-2009								
ABNMFFLOW6	-0.521	-0.476	-0.493	-0.476	-0.416	-0.503	-0.562	-0.586	
	-2.81	-2.62	-2.84	-2.49	-2.08	-2.76	-2.91	-2.91	
AMTS		-0.170							
		-1.54							
NSTD			0.947						
			0.66						
LIBOR				1.115					
				0.70					
TED3					0.016				
					1.59				
CRDSPRD						-0.783			
						-0.92			
AGGIVOL							-0.393		
							-0.63		
RETDISP								-0.098	
								-0.89	
TURN	-0.106	-0.130	-0.121	-0.095	-0.168	-0.058	-0.094	-0.098	
	-2.03	-2.10	-2.23	-1.71	-2.62	-0.85	-1.80	-1.96	
MFFLOWX	1.888	1.902	1.838	1.776	1.626	1.840	1.965	1.976	
	2.64	2.62	2.51	2.41	2.26	2.62	2.62	2.68	

Table 7A

- The abnormal flows to the Arb funds are strong negatively related to the future returns of AMTS.
- Interestingly, the flows to the non-Arb funds are strongly postively related to the future returns of AMTS.
 - This is at least loosely consistent with the idea that money flowing into non-Arb funds might be making the market less efficient.

Technological Shifts

- Rolling Sharpe-ratio for daily short-term-reversal strategy.
 - top 100 firm by market capitalization.
 - from Collin-Dufresne, Daniel, Moallemi, and Saglam (2012).

Differences Across Anomalies

- The short-term reversal return is postively related to VIX (Nagel 2012)
- The momentum return is negatively realated to market volatility and to other market stress measures. (Daniel and Moskowitz (2012))
- The beta anomaly return is negatively related to VIX, but positively related to the TED spread (Frazzini and Pedersen (2010); Hong and Sraer (2011))
 - Note that Frazzini and Pedersen (2010) also find that the lagged TED spread is negatively related to future returns

13 Other Anomalies

Anomaly	References				
Size	Banz (1981), Keim (1983)				
Accruals	Sloan (1996), Richardson, Sloan, Soliman, and Tuna (2005)				
Issuance	Daniel and Titman (2006), Pontiff and Woodgate (2008)				
Net Operating Assets	Hirshleifer, Hou, Teoh, and Zhang (2004)				
Idiosyncratic Risk	Ang, Hodrick, Xing, and Zhang (2006)				
Trading Volume	Gervais, Kaniel, and Mingelgrin (2001)				
Return on Assets	Fama and French (2006)				
Investment to Assets	Titman, Wei, and Xie (2009)				
Asset Growth	Cooper, Gulen, and Schill (2008)				
Financial Distress	Campbell, Hilscher, and Szilagyi (2008)				
Beta	Black, Jensen, and Scholes (1972), Black (1972), Daniel and Titman (1997), Frazzini and Pedersen (2010)				
Gross Profitabilty	Novy-Marx (2012)				
Operating Leverage	Novy-Marx (2011)				

 see Stambaugh, Yu, Yuan (2011, 2012), who use many of these anomalies in their analysis of the effects of short sale constraints & idiosyncratic vol. interactions.

Anomaly Horizon

- Rather than aggregating the anomalies together into the AMTS, It might be worthwile to break down the analysis by anomaly.
- The flow/anomlay-return is likely different for long-lived anomalies (value) than for short-lived anomalies (short-term-reversal).
 - One of the things that is puzzling for the authors (and me!) is the lack of a strong positive contemporaneous relation between Arb-fund flows and returns.
 - I'm guessing that such a relation would be considerably more pronounced for longer-horizon factors.
- This might be part of the reason we see such striking differences in the time-series relationships between capital shocks and anomaly returns.

References I

Andrew, Robert J. Hodrick, Yuhang Xing, and Xioayan Zhang, 2006, The cross-section of volatility and expected returns. The Journal of Finance 61, 259-299.

Banz, Rolf W., 1981, The relationship between return and the market value of common stocks, Journal of Financial and Quantitative Analysis 14, 421-441.

, Fischer, 1972, Capital market equilibrium with restricted borrowing, Journal of Business 45, 444-455.

, Michael Jensen, and Myron Scholes, 1972, The capital asset pricing model: Some empirical tests, in Michael C. Jensen, ed.: Studies in the Theory of Capital Markets . pp. 79-121 (Praeger: New York).

Campbell, John Y., Jens Hilscher, and Jan Szilagyi, 2008, In search of distress risk, The Journal of Finance 63, 2899-2939.

chan, Louis K.C., Yasushi Hamao, and Josef Lakonishok, 1991, Fundamental and stock returns in japan, Journal of Finance 46, 1739-1764.

Coren, Randolph B., Paul A. Gompers, and Tuomo Vuolteenaho, 2001, Who underreacts to cash-flow news? evidence from trading between individuals and institutions, Harvard University Working Paper.

Gooper, Michael J., Huseyin Gulen, and Michael J. Schill, 2008, Asset growth and the cross-section of stock returns, The Journal of Finance 63, 1609-1651.

Daniel, Kent D., and Tobias J. Moskowitz, 2012, Momentum crashes, Columbia Business School working paper.

References II

Daniel, Kent D., and Sheridan Titman, 1997, Evidence on the characteristics of cross-sectional variation in common stock returns. Journal of Finance 52, 1-33.

, 2006, Market reactions to tangible and intangible information, Journal of Finance 61, 1605-1643.

Fama, Eugene F., and Kenneth R. French, 1992, The cross-section of expected stock returns, Journal of Finance 47, 427-465.

. 2006. Profitability, investment and average returns, Journal of Financial Economics 82, 491-518.

, 2008, Dissecting anomalies, Journal of Finance 63, 1653-1678.

Frazzini, Andrea, and Lasse H. Pedersen, 2010, Betting against beta, NYU/Stern Working Paper.

Gervais, Simon, Ron Kaniel, and Dan H. Mingelgrin, 2001, The high-volume return premium, The Journal of Finance 56, 877-919.

Haugen, Robert A., and Nardin L. Baker, 1996, Commonality in the determinants of expected stock returns, Journal of Financial Economics 41, 401-439.

Hishleifer, David, Kewei Hou, Siew Hong Teoh, and Yinglei Zhang, 2004, Do investors overvalue firms with bloated balance sheets?, Journal of Accounting and Economics 38, 297-331.

. Harrison G., and David Sraer, 2011, Speculative Betas, Princeton Working Paper,

References III

deesh, Narasimhan, 1990, Evidence of predictable behavior of security returns, Journal of Finance 45, 881-898.

, and Sheridan Titman, 1993, Returns to buying winners and selling losers: Implications for stock market efficiency, Journal of Finance 48, 65-91.

Donald B., 1983, Size related anomalies and stock return seasonality: Further evidence, Journal of Financial Economics 12, 13-32,

Lemmann, Bruce N., 1990, Fads, martingales, and market efficiency, Quarterly Journal of Economics 105, 1-28.

Nagel, Stefan, 2012, Evaporating liquidity, Review of Financial Studies.

Now-Marx, R., 2011, Operating leverage, Review of Finance 15, 103-134.

Now-Marx, Robert, 2012. The other side of value: The gross profitability premium, Journal of Financial Economics. forthcoming University of Rochester working paper.

Hontiff, Jeffrey, and Artemiza Woodgate, 2008, Share issuance and cross-sectional returns, The Journal of Finance 63. 921-945.

Richardson, Scott A., Richard G. Sloan, Mark T. Soliman, and Irem Tuna, 2005, Accrual reliability, earnings persistence and stock prices. Journal of Accounting and Economics 39, 437-485.

Rosenberg, Barr, Kenneth Reid, and Ronald Lanstein, 1985, Persuasive evidence of market inefficiency, Journal of Portfolio Management 11, 9-17,

References IV

Sloan, Richard, 1996, Do stock prices fully reflect information in accruals and cash flows about future earnings?, Accounting Review 71, 289-315.

Stambaugh, Robert F., Jianfeng Yu, and Yu Yuan, 2011, The short of it: Investor sentiment and anomalies, Journal of Financial Economics 104, 288-302 Wharton School Working Paper.

-, 2012, Arbitrage asymmetry and the idiosyncratic volatility puzzle, Wharton School Working Paper.

Titman, Sheridan, K.C. John Wei, and Feixue Xie, 2009, Capital investments and stock returns, *Journal of Financial* and Quantitative Analysis 39, 677-700.