Discussion of:

Financial Intermediaries and the Cross-Section of Asset Returns

Tobias Adrian, Erkko Etula and Tyler Muir

Kent Daniel†

[†]Columbia University, Graduate School of Business

AFA Meetings 6 January, 2012

Overview

- Model Intuition
- 2 Empirical Tests
 - Funding Liquidity Proxy
 - Leverage-factor Mimicking Portfolio construction
 - Timing Issues

- The setting of Brunnermeier and Pedersen (2009, BP) is:
 - Future prices (p_1^j) may differ from fundamental values (v_1^j) .

- The setting of Brunnermeier and Pedersen (2009, BP) is:
 - Future prices (p_1^i) may differ from fundamental values (v_1^i) .
 - Risk-neutral speculators will try to buy low-priced and sell high-priced assets, but they are constrained by margin requirements, given their limited capital. Thus,

$$\phi_1 = 1 + \max_{j} \left\{ \max \left(\frac{v_1^j - p_1^j}{m_1^{j+}}, \frac{-(v_1^j - p_1^j)}{m_1^{j-}} \right) \right\}$$

where m_1^{j+} and m_1^{j-} are the margin requirements for, respectively, long and short positions in security j.

- The setting of Brunnermeier and Pedersen (2009, BP) is:
 - Future prices (p_1^j) may differ from fundamental values (v_1^j) .
 - Risk-neutral speculators will try to buy low-priced and sell high-priced assets, but they are constrained by margin requirements, given their limited capital. Thus,

$$\phi_1 = 1 + \max_j \left\{ \max\left(\frac{v_1^j - p_1^j}{m_1^{j+}}, \frac{-(v_1^j - p_1^j)}{m_1^{j-}} \right) \right\}$$

where m_1^{j+} and m_1^{j-} are the margin requirements for, respectively, long and short positions in security j.

• Therefore the RN speculator, at time 0, selects a portfolio so as to maximize $E_0[\tilde{\phi}_1 \tilde{W}_1]$

 If the speculator sets prices, the FOC from the speculator's optimization will give time 0 prices:

$$p_0^j = E_0[\tilde{p}_1^j] + rac{cov_0\left[ilde{\phi}_1, ilde{p}_1^j
ight]}{E_0[ilde{\phi}_1]}$$

 If the speculator sets prices, the FOC from the speculator's optimization will give time 0 prices:

$$p_0^j = E_0[\tilde{p}_1^j] + \frac{cov_0\left[\tilde{\phi}_1, \tilde{p}_1^j\right]}{E_0[\tilde{\phi}_1]}$$

• Intuitively, if the ratio of mispricing/margin-required (ϕ_1) grows large, an extra dollar is really valuable to a speculator.

 If the speculator sets prices, the FOC from the speculator's optimization will give time 0 prices:

$$p_0^j = E_0[\tilde{p}_1^j] + \frac{cov_0\left[\tilde{\phi}_1, \tilde{p}_1^j\right]}{E_0[\tilde{\phi}_1]}$$

- Intuitively, if the ratio of mispricing/margin-required (ϕ_1) grows large, an extra dollar is really valuable to a speculator.
- and, assets that give you a high return when $\tilde{\phi}$ is big must command a high price, and have a low expected return.
 - They are insurance against these bad states.

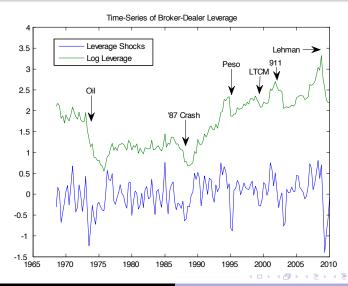
• AEM proxy for ϕ_1 with 2-quarter shocks to aggregate broker-dealer leverage.

- AEM proxy for ϕ_1 with 2-quarter shocks to aggregate broker-dealer leverage.
- Given BP's equation (14), this seems reasonable:

$$\phi_1 = 1 + \max_j \left\{ \max\left(\frac{v_1^j - p_1^j}{m_1^{j+}}, \frac{-(v_1^j - p_1^j)}{m_1^{j-}}\right) \right\}$$

- AEM proxy for ϕ_1 with 2-quarter shocks to aggregate broker-dealer leverage.
- Given BP's equation (14), this seems reasonable:

$$\phi_1 = 1 + \max_j \left\{ \max\left(\frac{v_1^j - p_1^j}{m_1^{j+}}, \frac{-(v_1^j - p_1^j)}{m_1^{j-}}\right) \right\}$$


 broker-dealers will (probably) reduce leverage as volatility increases in a crisis, as margin requirements increase, leading to greater mispricings per dollar of margin.

- AEM proxy for ϕ_1 with 2-quarter shocks to aggregate broker-dealer leverage.
- Given BP's equation (14), this seems reasonable:

$$\phi_1 = 1 + \max_j \left\{ \max\left(\frac{v_1^j - p_1^j}{m_1^{j+}}, \frac{-(v_1^j - p_1^j)}{m_1^{j-}}\right) \right\}$$

- broker-dealers will (probably) reduce leverage as volatility increases in a crisis, as margin requirements increase, leading to greater mispricings per dollar of margin.
- However, it would be interesting to better document the relation between the 2-q innovations changes and the ratio of investment opportunities to margin requirements.

Leverage Shocks

LMP Construction

- AEM construct a Leverage Mimicking Portfolio (LMP).
- The idea here is to find the portfolio that is maximially corrlated with $\tilde{\phi}$, as proxied by innovations in leverage.
 - If the 2-q leverage innovations are a good model for the pricing kernel, this portfolio will be MVE.
- To construct the LMP, they project their leverage shock variable onto the 6 Fama and French (1993) size/BM portfolio and the Carhart (1997) momentum portfolio (UMD).
- Impressively, this projections picks out almost the most efficient combination of seven portfolios.

LMP Construction

- AEM construct a Leverage Mimicking Portfolio (LMP).
- The idea here is to find the portfolio that is maximially corrlated with $\tilde{\phi}$, as proxied by innovations in leverage.
 - If the 2-q leverage innovations are a good model for the pricing kernel, this portfolio will be MVE.
- To construct the LMP, they project their leverage shock variable onto the 6 Fama and French (1993) size/BM portfolio and the Carhart (1997) momentum portfolio (UMD).
- Impressively, this projections picks out almost the most efficient combination of seven portfolios.
- However, it would be more convincing to study the projection onto the full return space.

Timing of Momentum Returns

- Authors find that low-momentum (past-loser) stocks are a good hedge against increasing broker-dealer constraints.
- This is surprising, given the timing of momentum returns in crisis episodes.
- low-momentum stocks typically do poorly going into a crisis, and do very well coming out of it.

Timing of Momentum Returns

Other Issues:

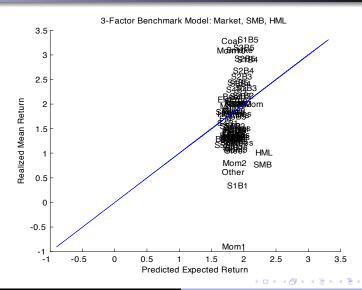
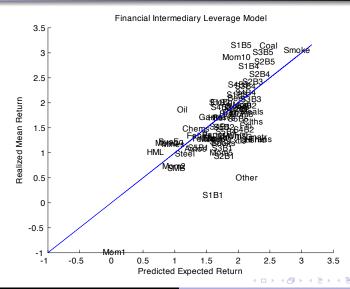

 Is the model pricing the residuals over a relatively short period?:

Figure 3 shows that the strong performance of the leverage factor stems largely from the correct pricing of the industry portfolios and the momentum portfolios (p. 17)


• Are the model comparisons reasonable?

Yet, and perhaps most notably, the leverage factor is able to correctly price the value factor (HML) and size factor (SMB) – a dimension where the Fama-French model itself performs quite poorly (see Fig. 4). (p. 17)

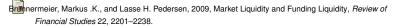
3-factor model performance

Leverage model performance

Conclusions

- The idea that we should see if prices are consistent with the FOC for optimization of financial intermediaries is really good.
- The empirical results are impressive and intriguing.

Conclusions


- The idea that we should see if prices are consistent with the FOC for optimization of financial intermediaries is really good.
- The empirical results are impressive and intriguing.

Suggestions:

- Better document the link of the 2-q leverage innovations with the marginal value of a dollar for the broker-dealers.
- Construct a leverage-mimicking-porfolio using the primitive assets (e.g., individual stocks).
- Better understand the timing relationships of some of the variables (e.g., momentum)

References I

Carnart, Mark M., 1997, On persistence in mutual fund performance, Journal of Finance 52, 57-82.

Fana, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and bonds, *Journal of Financial Economics* 33. 3–56.