Discussion of:

A Tale of Two Anomalies: The Implications of Investor Attention for Price and Earnings Momentum

by Kewei Hou, Lin Peng and Wei Xiong

Kent Daniel1

Goldman Sachs Asset Management, Kellogg-Northwestern and NBER

American Finance Association Meetings
January 2007

Price and Earnings Momentum

- This paper explores the different characteristics of price and earnings momentum
- HPX add to the literature documenting the distinctions between the two anomalies
- HPX argue that these differences are explained by limited attention, interacting with other behavioral biases.

Price and Earnings Momentum

- This paper explores the different characteristics of price and earnings momentum
- HPX add to the literature documenting the distinctions between the two anomalies
- HPX argue that these differences are explained by limited attention, interacting with other behavioral biases.

Price and Earnings Momentum

- This paper explores the different characteristics of price and earnings momentum
- HPX add to the literature documenting the distinctions between the two anomalies
- HPX argue that these differences are explained by limited attention, interacting with other behavioral biases.

- Review of Results
- 2 Theory
 - What is "limited attention"?
 - What are the implications?
 - Are the tests consistent with these implications?
- The Empirical Evidence
 - Orthogonalization Procedure
 - Other Momentum-Interaction Studies
- Concluding Recommendations

- Review of Results
- 2 Theory
 - What is "limited attention"?
 - What are the implications?
 - Are the tests consistent with these implications?
- The Empirical Evidence
 - Orthogonalization Procedure
 - Other Momentum-Interaction Studies
- Occuping Recommendations

- Review of Results
- 2 Theory
 - What is "limited attention"?
 - What are the implications?
 - Are the tests consistent with these implications?
- The Empirical Evidence
 - Orthogonalization Procedure
 - Other Momentum-Interaction Studies
- Concluding Recommendations

- Review of Results
- 2 Theory
 - What is "limited attention"?
 - What are the implications?
 - Are the tests consistent with these implications?
- The Empirical Evidence
 - Orthogonalization Procedure
 - Other Momentum-Interaction Studies
- Concluding Recommendations

Limited Attention Hypothesis

 Limited-Attention is frequently viewed as a reason why prices should underreact to information. Here HPX argue:

When investors pay less attention to a company's stock, they are more likely to ignore the company's earnings announcements and, therefore, they are unable to fully incorporate the information into the stock price. (p. 1)

 However, the story for limited-attention is necessarily a bit more complicated than this.

Limited Attention Hypothesis

- To explain underreaction on earnings-announcement dates (EADs), the argument would have to be that those trading on EADs do not observe the earnings information.
 - This would contrast with a theory where investors observe the announcement, but underestimate its importance for firm value.
- Particularly since we see large trading volume on EADs, is it plausible that a large fraction of those trading do so without knowledge of the EA?
- It would be nice to see a better developed theory section, and a tighter link between the empirical tests and this theory.
 - e.g, should the ratio of EAD to non-EAD turnover be used as the interactive variable?

Review of Empirical Results

- Price Momentum is stronger for high volume stocks.
 - Earnings momentum is weaker. **
- Price Momentum profits reverse.
 - Earnings Momentum profits do not.
- Price Momentum is stronger following positive Mkt returns.
 - Earnings Momentum is weaker

Review of Empirical Results

- Price Momentum is stronger for high volume stocks.
 - Earnings momentum is weaker. **
- Price Momentum profits reverse.
 - Earnings Momentum profits do not.
- Price Momentum is stronger following positive Mkt returns.
 - Earnings Momentum is weaker

Review of Empirical Results

- Price Momentum is stronger for high volume stocks.
 - Earnings momentum is weaker. **
- Price Momentum profits reverse.
 - Earnings Momentum profits do not.
- Price Momentum is stronger following positive Mkt returns.
 - Earnings Momentum is weaker

Other Interactive Variables

Other Momentum Interaction Results:

- Value/Momentum Interaction
 - Asness (1997), Daniel and Titman (1999)
- Trading Volume/Turnover
 - Lee and Swaminathan (2000), Grinblatt and Han (2005)
- Capital Gains Overhang
 - Frazzini (2006)
- Analyst Coverage (slow diffusion)
 - Hong, Lim, and Stein (2000)
- Dispersion in Analysts' Forecasts
 - Diether, Malloy, and Scherbina (2002)
- Credit Rating
 - Avramov, Chordia, Jostova, and Philipov (2006)

Long Term Reversal

- Daniel and Titman (2006, JF) examines the long-term reversal effect, and the link between this and the value effect.
- We find no evidence that prices overreact to any fundamental growth measures – or to what we call tangible information.
 - and strong evidence that prices overreact to the component of past returns orthogonal to fundamental growth measures

 that is to what we call intangible information.
 - Related to HPX's "orthogonalized price momentum."

Price Momentum Orthogonalization - Table 7A

Panel A: Price Momentum Profits

Not Controlling for Earnings Momentum									Controlling for Earnings Momentum								
	Mom1	2	3	4	Mom5	5-1	FF α		Moml	2	3	4	Mom5	5-1	FF α		
Turnover1	-0.0024	-0.0008	0.0009	0.0018	0.0023	0.0047	0.0069	Turnover1	-0.0017	-0.0002	0.0009	0.0015	0.0013	0.0031	0.0051		
	-1.37	-0.62	0.71	1.32	1.62	1.85	2.72		-1.03	-0.19	0.72	1.08	0.97	1.25	2.04		
2	-0.0040	0.0006	0.0008	0.0017	0.0033	0.0073	0.0087	2	-0.0029	0.0011	0.0002	0.0007	0.0035	0.0063	0.0079		
	-2.59	0.61	1.10	1.82	3.07	3.26	3.79		-1.91	1.13	0.30	0.80	3.34	2.94	3.57		
3	-0.0051	-0.0015	-0.0004	0.0013	0.0042	0.0093	0.0113	3	-0.0039	-0.0014	0.0000	-0.0001	0.0036	0.0074	0.0093		
	-2.95	-1.45	-0.60	1.75	4.00	3.91	4.70		-2.35	-1.35	0.05	-0.12	3.27	3.17	3.92		
4	-0.0042	-0.0020	-0.0010	0.0016	0.0062	0.0104	0.0125	4	-0.0038	-0.0019	-0.0001	0.0011	0.0058	0.0095	0.0113		
	-2.32	-1.81	-1.24	1.76	4.41	4.03	4.85		-2.12	-1.87	-0.17	1.17	4.19	3.84	4.49		
Turnover5	-0.0090	-0.0020	0.0011	0.0038	0.0085	0.0175	0.0193	Turnover5	-0.0082	-0.0017	0.0009	0.0029	0.0084	0.0167	0.0183		
	-4.00	-1.53	0.87	2.40	4.02	5.52	5.93		-3.81	-1.26	0.72	1.79	4.02	5.46	5.85		
Test (turnover1=turnover5) 3.16 8.95												3.47	10.89				
P-value 0.0017 0.0028												0.0006	0.0010				

Earnings Momentum Orthogonalization - Table 7B

Panel B: Earnings Momentum Profits

Not Controlling for Price Momentum									Controlling for Price Momentum								
	Mom1	2	3	4	Mom5	5-1	FF a		Moml	2	3	4	Mom5	5-1	FF α		
Turnover1	-0.0024	-0.0028	0.0015	0.0023	0.0052	0.0075	0.0090	Turnover1	-0.0017	-0.0018	-0.0003	0.0024	0.0047	0.0064	0.0072		
	-2.12	-2.30	1.25	2.11	4.44	5.61	6.74		-1.59	-1.49	-0.29	2.11	4.05	5.31	5.82		
2	-0.0021	-0.0024	0.0009	0.0027	0.0042	0.0063	0.0066	2	-0.0016	-0.0012	-0.0010	0.0040	0.0032	0.0048	0.0049		
	-2.11	-2.30	0.91	2.62	4.64	4.77	4.80		-1.67	-1.19	-1.05	3.94	3.13	3.52	3.42		
3	-0.0025	-0.0017	-0.0004	0.0025	0.0032	0.0057	0.0050	3	-0.0020	-0.0018	0.0000	0.0023	0.0027	0.0047	0.0035		
	-2.19	-1.41	-0.35	2.80	3.19	3.52	2.98		-1.89	-1.64	-0.01	2.13	2.47	3.06	2.24		
4	-0.0022	-0.0002	0.0007	0.0014	0.0059	0.0081	0.0080	4	-0.0004	0.0009	0.0006	0.0002	0.0042	0.0046	0.0040		
	-1.78	-0.15	0.61	1.19	4.81	4.66	4.54		-0.31	0.77	0.54	0.14	3.34	2.75	2.38		
Turnover5	-0.0024	-0.0005	0.0019	0.0038	0.0055	0.0079	0.0082	Turnover5	0.0016	0.0025	0.0014	0.0019	0.0022	0.0007	0.0007		
	-1.26	-0.28	1.24	2.24	3.40	3.70	3.72		0.86	1.43	0.93	1.18	1.50	0.37	0.36		
Test (turnover1=turnover5) 0.14 0.09												2.64	8.52				
P-value 0.8922 0.7682												0.0086	0.0036				

Price Momentum Orthogonalization Procedure

• At each t, HPX run a cross-sectional regression (over i):

$$\tilde{R}_{i,1yr} = \alpha + \beta \left(\sum_{\tau \in T} \mathsf{SUE}_{i,\tau} \right) + \tilde{u}_i$$

- The residual, \tilde{u}_i , is now orthogonalized relative to earnings momentum.
- This orthogonalization makes sense because returns reflect both fundamental and "intangible" information $\tilde{\iota}$:

$$\tilde{R}_{i,1yr} = \gamma_F \cdot \tilde{\mathsf{SUE}}_{i,1yr} + \gamma_I \cdot \tilde{\iota}_{i,1yr}$$

where $\tilde{\iota} \perp \tilde{\mathsf{SUE}}$

Earnings Momentum Orthogonalization Procedure

 To orthogonalize earnings momentum, HPX run the reverse regression:

$$\left(\sum_{\tau \in T} \mathsf{SUE}_{i,\tau}\right) = \alpha^{\dagger} + \beta^{\dagger} \tilde{R}_{i,1yr} + \tilde{u}_{i}^{\dagger}$$

- \tilde{u}_i^{\dagger} is now taken to be orthogonalized relative to earnings momentum.
- However, here since SUE and R are positively correlated, u[†] will be negatively correlated with past (intangible) returns:

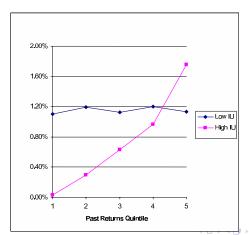
$$u^{\dagger} \approx \text{SUE} - \beta^{\dagger} (\gamma_F \cdot \text{SUE} + \gamma_I \cdot \tilde{\iota})$$

 $\approx (1 - \beta^{\dagger} \gamma_F) \text{SUE} - \beta^{\dagger} \gamma_I \cdot \tilde{\iota}$

Ambiguity & Momentum – Additional Evidence

- Zhang (2006) and Jiang, Lee, and Zhang (2005) also examine "information uncertainty" variables and the interaction with price-momentum and earnings-momentum.
- Based the evidence that overconfidence is stronger when ambiguity/information-uncertainty is stronger, they argue that high IU firms should exhibit higher price- and earnings-momentum
- Using a number of IU proxies, they find evidence consistent with this

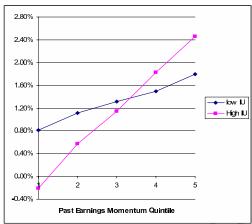
Zhang & JLZ Variables


As proxies for Information Uncertainty, (Ambiguity) Zhang (2006) and Jiang, Lee, and Zhang (2005) use:

- Firm age
- Firm return volatility
- Average daily turnover
- Dispersion of analysts' earnings forecasts
- Duration of the firm's cash flows
 - Closely related to cashflow/price

IU & Price Momentum

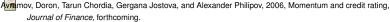
From Jiang, Lee, and Zhang (2005), Figure 1:

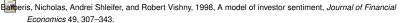

Average Monthly Returns to Portfolios Formed using Combined Measures of Information Uncertainty (IU) and Past Price Momentum

IU & Earnings Momentum

Jiang, Lee, and Zhang (2005), Figure 2:

Average Monthly Returns to Portfolios Formed using Combined Measures of Information Uncertainty (IU) and Past Earnings Momentum


Concluding Recommendations


- Better linking of good limited attention theory and empirical tests.
- Robustness Checks, particularly for earnings momentum results:
 - Alternative proxies for "attention"
 - Alternative measures of earnings momentum
- Reconcile results here with extant results from the literature.
- Are turnover (and other interactive variables) limits-to-arbitrage proxies?

References I

Asness, Clifford S., 1997, The interaction of value and momentum strategies, Financial Analysts' Journal 53, 29-36.

Daniel, Kent D., David Hirshleifer, and Avanidhar Subrahmanyam, 1998, Investor psychology and security market under- and over-reactions. Journal of Finance 53, 1839-1886.

Daniel, Kent D., and Sheridan Titman, 1999, Market efficiency in an irrational world, Financial Analysts' Journal 55, 28-40.

. 2006. Market reactions to tangible and intangible information, Journal of Finance 61, 1605-1643.

Diether, Karl B., Christopher J. Malloy, and Anna Scherbina, 2002, Differences of opinion and the cross-section of stock returns, Journal of Finance 57, 2113-2141.

Frazzini, Andrea, 2006. The disposition effect and underreaction to news, Journal of Finance 61, 2017–2046.

Grinblatt, Mark, and Bing Han, 2005, Prospect theory, mental accounting, and momentum., Journal of Financial Economics 78, 311-339.

References II

Hong, Harrison, Terence Lim, and Jeremy Stein, 2000, Bad news travels slowly: Size, analyst coverage and the profitability of momentum strategies, Journal of Finance 55, 265-295.

Jang, Guohua, Charles M. C. Lee, and Grace Y. Zhang, 2005, Information uncertainty and expected returns, Review of Accounting Studies 10, 185-221.

Charles M.C., and Bhaskaran Swaminathan, 2000, Price momentum and trading volume, Journal of Finance 55. 2017 - 2069.

Zhang, X. Frank, 2006, Information uncertainty and stock returns, Journal of Finance 61, 105–137.