Discussion of: Benchmarking Money Manager Performance: Issues and Evidence

Chan, Dimmock and Lakonishok

Kent Daniel1

¹Goldman Sachs Asset Management Kellogg, Northwestern

Kellogg Hedge Fund Conference, 15 August 2006

Introduction

- CDL examine a number of issues related to performance evaluation:
 - Time-series regression vs. characteristic matching.
 - Dependent vs. independent sorts on size/value.
 - Equal- vs. value-weighting within groups
 - Which value measure should be used
 - Annual vs. Quarterly
 - B/M vs. Composite value measure
- One of the key messages in this paper is that differences in methodology result in "large" differences in measured performance.

Discussion Plan

- This is well thought out, interesting and provocative piece.
 - There are a lot of interesting results here.
- I'm going to try to provide a really basic framework within which to understand CDL's empirical results.

Performance Evaluation Theory – the RGP

 Start with a return generating process based on the client's information set:

$$\tilde{\mathbf{r}}_t = \mathbf{B}_{t-1} \tilde{\mathbf{F}}_t + \tilde{\epsilon}_t$$

where:

- **r**_t is the N-vector of period t excess returns.
- \mathbf{B}_{t-1} is the matrix of factor-loadings at t-1
- $\tilde{\mathbf{F}}_t$ is the time t excess return on a set of diversified factor portfolios.
- $\tilde{\epsilon}_t$ is the vector of time *t residuals*,

and where:

$$E_{t-1}[\tilde{\boldsymbol{\epsilon}}_t] = 0$$
, $E_{t-1}[\tilde{\boldsymbol{F}}_t \tilde{\boldsymbol{\epsilon}}_t'] = \boldsymbol{0}$, $E_{t-1}[\tilde{\boldsymbol{\epsilon}}_t \tilde{\boldsymbol{\epsilon}}_t'] = \boldsymbol{\Lambda}$ (Diagonal)

Optimal Passive Client Portfolio

$$\tilde{\mathbf{r}}_t = \mathbf{B}_{t-1} \tilde{\mathbf{F}}_t + \tilde{\epsilon}_t$$

 In this setting, the MV optimal (passive) unconstrained client portfolio will be a combination of the factor portfolios, with factor portfolio weights:

$$\mathbf{w}_{t-1} = \delta \mathbf{\Omega}^{-1} \boldsymbol{\lambda}$$

where $\Omega = \operatorname{cov}_{t-1}(\tilde{\mathbf{F}}_t)$ and $\lambda = E_{t-1}[\tilde{\mathbf{F}}_t]$.

- These weights maximize the portfolio Sharpe Ratio.
- For example, given the Fama and French (1993)/Carhart (1997) model, the optimal portfolio would be a combination of the risk-free asset with the Market, HML, SMB, and UMD portfolios.

Active Management

$$\tilde{r}_{p,t} = \frac{\alpha_{p,t-1}}{\epsilon_{p,t}} + \mathbf{B}_{p,t-1}\tilde{\mathbf{F}}_t + \tilde{\epsilon}_{p,t}$$

- Now consider an investment manager, who potentially has better information than the client.
- In this case the client will expect the manager to earn an additional *abnormal* return $\alpha_{p,t-1}$ on his/her managed portfolio (net of fees & expenses).
- If α_{t-1} > 0, then the client portfolio can be improved by investing with this manager.
 - Based on the Treynor and Black (1973) logic, the amount allocated to the active manager should be proportional to:

$$\alpha_{p,t-1}/\sigma_{\epsilon,p}^2$$

Sources of Alpha

- Within this framework, the manager will have a positive alpha if she adds value through:
 - Stock selection
 - Factor timing
 - Better understanding of factor structure.
- The manager will have a zero alpha if she uses:
 - Simple strategies (e.g., size, value. momentum)
 - Leverage,
- and negative alpha if performance is less than fees and expenses.

Estimating α

$$\tilde{r}_{p,t} = \alpha_{p,t-1} + \mathbf{B}_{p,t-1} \tilde{\mathbf{F}}_t + \tilde{\epsilon}_{p,t}$$

- A common misperception is that α here is the past fund performance, $\hat{\alpha}$
- α is rather the expected future performance of the fund, based on all information available to the client.
 - If performance persistence is low, expected future performance may be almost completely unrelated to past performance.
- If estimated past alpha is related to expected future alpha, then manager allocations should be related to $\hat{\alpha}$.

Estimating Alpha

- This paper explores two basic methods for estimating fund performance:
 - Time series regression method
 - Carhart (1997)
 - Characteristic matching method
 - Daniel, Grinblatt, Titman, and Wermers (1997)

Time Series Analysis

$$\tilde{r}_{p,t} = \alpha_{p,t-1} + \mathbf{B}_{p,t-1} \tilde{\mathbf{F}}_t + \tilde{\epsilon}_{p,t}$$

- If:
 - \bullet α_p and \mathbf{B}_p are stationary, and
 - 2 a set of portfolios $\tilde{\mathbf{F}}_t$ span the MVE portfolio, based on the client's information.

then $\hat{\alpha}_{p}$ can be estimated with a time-series regression:

$$\tilde{r}_{p,\tau} = \hat{\alpha}_p + \hat{\mathbf{B}}_p \tilde{\mathbf{F}}_{\tau} + \tilde{\epsilon}_{p,\tau}$$

then the estimate of α_p is the regression intercept $\hat{\alpha}_p$.

- This method works well if:
 - you have high frequency data or long time series.
 - the regression R² is high.

Characteristic-based analysis

• $\hat{\alpha}_p^C$ is defined as the mean of the weighted difference between each portfolio asset's return and the corresponding characteristics-matched portfolio return:

$$\hat{\alpha}_{p,t}^{C} = \tilde{r}_{p,t} - \underbrace{\hat{r}_{p,t}^{C}}_{=(\mathbf{B}_{p,t-1}\tilde{\mathbf{F}}_{t}) + \tilde{u}_{t}} + \tilde{\epsilon}_{p,t}$$

- The underlying assumption is that two assets with the same set of characteristics will have essentially the same factor loadings.
- The characteristics method will work well if:
 - accurate, timely portfolio holdings data are available
 - there is a large cross section of assets
- A key issue is the size of the matched portfolio.

$$\tilde{r}_{p, au} = \hat{lpha}_p + \hat{\mathbf{B}}_p \tilde{\mathbf{F}}_{ au} + \tilde{\epsilon}_{p, au}$$

$$\hat{\alpha}_{p,t}^{C} = \tilde{r}_{p,t} - \underbrace{\hat{r}_{p,t}^{C}}_{=(\mathbf{B}_{p,t-1}\tilde{\mathbf{F}}_{t}) + \tilde{u}_{t}} + \tilde{\epsilon}_{p,t}$$

- The different approaches yield very different results.
- However, it doesn't appear that the differences are much different that one would expect.
 - This would be interesting to calibrate.
- The differences in tracking error volatility across measures are also (probably) consistent with what we would expect
 - Again, this would be interesting to calibrate.

Why do we care?

- Expected α should be *the only* input into the client's hire/fire decision.
- Yet, CDL implicitly argue that clients pay too much attention to measured performance:
 - "Failure to meet targets invites even more frequent monitoring from clients and consultants. To capture this short term orientation ..."
 - "Given the emphasis on performance, a few quarters of poor results can sour relations between a money manager and clients."
 - "In practice managers are hired and fired on the basis of performance over short horizons"
- Clients should rationally use past performance information only to the extent is helps to forecast future performance.

Performance Metric

- CDL don't examine whether any of these measures forecast future performance.
 - Instead CDL use the mean & median tracking error volatility and absolute return of the measures as performance metrics.
 - These are probably, but not necessarily, related to alpha forecast error.
- Why not examine directly how well each of these measures forecast future alpha?
 - For example, how well does a portfolio which is long high $\hat{\alpha}_p/\sigma_{\epsilon,p}$ fund do?
- Finally, how well would a combination of time-series and characteristics-approaches work?

Other Data?

- Past performance is not the only observable instrument for future performance.
- Moreover, among mutual funds, Chevalier and Ellison (1999) find that there is manager persistence, not fund persistence.
 - Also, Chevalier and Ellison find that younger managers from a good undergraduate institution (with high composite SAT scores) perform better.
- Finally, it seems like many clients, acknowledging that past performance is noisy, use other data in forecasting future alpha:
 - Process characteristics
 - Team longetivity and characteristics.
- Unfortunately, little academic research has been done assessing the efficacy of these fund characteristics.

Additional Issues

- Why not control for momentum?
 - Numerous studies show that momentum is a key predictor of fund returns.
 - Controlling for momentum may fix some of the anomalous results.
 - e.g., quarterly vs. annual value measures.
- Additional Factors
 - Standard practice in time-series analysis is now to include only factors with a high premium:
 - i.e., Mkt, SMB, HML, UMD
 - However, these factors do not do a good job of explaining the cross-section of realized returns (the covariance matrix)
 - Including industry factors, etc., would increase the regression R², and hence reduce α̂ estimation error.

References I

carnart, Mark M., 1997, On persistence in mutual fund performance, Journal of Finance 52, 57-82.

the valier, Judith, and Glenn Ellison, 1999, Are some mutual fund managers better than others?, Journal of Finance 54. 875-899.

Daniel, Kent D., Mark Grinblatt, Sheridan Titman, and Russ Wermers, 1997, Measuring mutual fund performance with characteristic-based benchmarks, Journal of Finance 52, 1035-1058.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and bonds, Journal of Financial Economics 33, 3-56.

Treynor, Jack L., and Fischer Black, 1973, How to use security analysis to improve portfolio selection, The Journal of Business 46, 66-86.

