Discussion of:

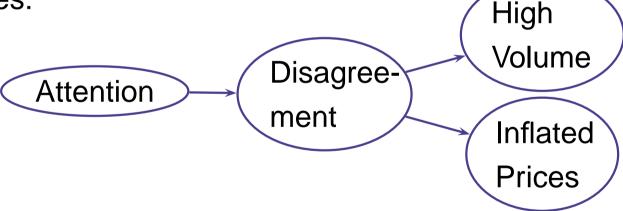
Gone Fishin': Seasonality and Speculative Trading in Asset Prices

by Harrison Hong and Jialin Yu

NBER - University Research Conference
May 13, 2005

Discussant: Kent Daniel

Motivation


- The premia associated with liquidity can be large.
 - e.g., Tech/Internet stocks in the "bubble" period had both high turnover and high valuations.
 - The popular press argued (at least ex-post) that both turnover and prices both a result of intense "speculation."
- This paper argues that disagreement is at least partly responsible for the link between turnover and returns.
 - Further, it argues that an interesting test of this hypothesis is the seasonal comovement of liquidity and prices.

Disagreement

Many recent papers have explored the idea that overconfidence + disagreement + short sale constraints pushes up asset prices (Miller (1977)).

HY argue that this is one mechanism driving volume and

prices:

HY argue that in summer there is less attention & disagreement, and hence lower volume & less inflated prices.

Hong & Yu Findings

- HY test this hypothesis by examining turnover and valuation ratios (P/S and P/B) in summer and non-summer months.
- HY find that, for more "speculative" stocks, there is:
 - Lower turnover in summer months.
 - Lower valuation ratios in summer.
- However, valuation ratios are not good mispricing measures
 - We don't test asset-pricing models with valuation ratios –
 we test return implications.
 - Changes in valuation ratios can be associated with other factors that could have seasonal variation.

Hong & Yu Findings (2)

- However, HY do investigate returns, and in fact find strong evidence that returns of more "speculative" stocks are lower in the summer.
- Because I think returns are the right variable to investigate, I'm going to:
 - Examine the robustness HY's empirical findings on return seasonality.
 - Examine the consistency of these empirical finding with their model implications.

HY Findings - Return Seasonality

■ Table 3c. compares the returns of dot-com stocks and other stocks over the 1992-2003 period:

	Return difference between dot-com and rest of Mkt	t-stat
Buy at end of Feb, Sell at end of Aug	-1.96%	(-0.42)
Buy at end of Aug, Sell at end of Feb	42.03%	(3.52)
Difference-in-Difference	-43.98%	(-4.02)

Empirical Findings - Return Seasonality

■ Table 9d. compares the returns of speculative US stocks (high residual turnover) and other stocks (1961-2003)(?):

	Ret diff btwn speculative and other stocks	t-stat
Buy at end of Feb, Sell at end of Aug	-4.49%	(-5.71)
Buy at end of Aug, Sell at end of Feb	0.28%	(0.32)
Difference-in-Difference	-4.77%	(-6.47)

Alternative Turnover Measure

- As a robustness test, I examined an alternative portfolio based on modified turnover:
 - Calculate the stock's turnover divided the median turnover of stocks on that exchange (NYSE, AMEX or NASDAQ) in that month.
 - Average this measure over the preceding 12 months.
 - Go long the top 20%, short the bottom 20% of modified turnover stocks.
- The mean return of this portfolio is -0.60%/month (t = -2.4).
- Also, in tests, I define summer as June-August (the 3rd quarter), rather than March-August.

Alternative Turnover Portfolio Results

For NYSE stocks only:

	α	β_{Sum}
Coef.	0.07	-0.85
t-stat	(0.3)	(-2.3)

For NASDAQ stocks only:

	α	eta_{Sum}
Coef.	0.07	-1.27
t-stat	(0.3)	(-2.8)

Empirical Findings

Regression on Monthly Dummies – All Stocks – 1963-2004

	α	eta_{Feb}	eta_{Mar}	eta_{Apr}	eta_{May}	eta_{Jun}
Coef.	0.51	-1.78	-1.67	-1.63	-1.47	-1.63
t-stat	(0.6)	eta_{Feb} -1.78 (-1.4)	(-1.3)	(-1.3)	(-1.2)	(-1.3)
	β_{Jul}	β_{Aug}	eta_{Sep}	β_{Oct}	β_{Nov}	
Coef.	eta_{Jul} -2.82	β _{Aug} -0.77 (-0.6)	eta_{Sep} -1.62	β _{Oct} -1.20	eta_{Nov} 1.08	

Empirical Findings

Regression on Monthly Dummies – NYSE Stocks Only - 1963-2004

	α	eta_{Feb}	eta_{Mar}	eta_{Apr}	eta_{May}	eta_{Jun}
Coef.	α 0.70 (1.1)	-0.86	-0.34	-0.62	-1.08	-2.18
t-stat	(1.1)	(-1.0)	(-0.4)	(-0.7)	(-1.2)	(-2.5)
	β_{Jul}	β_{Aug}	β_{Sep}	β_{Oct}	β_{Nov}	β_{Dec}
Coef.	eta_{Jul} -2.09 (-2.4)	eta_{Aug} -0.26	eta_{Sep} -1.39	β _{Oct} -1.66	eta_{Nov} 0.20	β _{Dec} -0.62

Empirical Findings

Regression on Monthly Dummies – NASDAQ Only - 1984-2004

	α	eta_{Feb}	eta_{Mar}	eta_{Apr}	eta_{May}	eta_{Jun}
Coef.	1.82	-3.82	-4.83	-4.11	-2.98	-3.24
t-stat	α 1.82 (1.0)	(-1.5)	(-1.9)	(-1.7)	(-1.2)	(-1.3)
Coef.	eta_{Jul} -5.85 (-2.4)	eta_{Aug} -2.52	eta_{Sep} -4.41	β _{Oct} -1.85	eta_{Nov} 0.17	eta_{Dec} -0.91

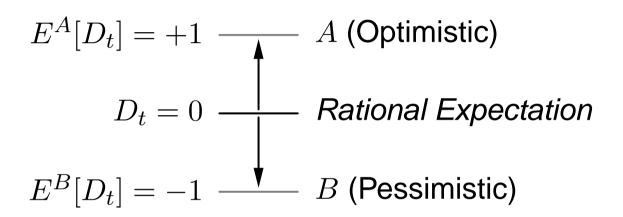
Disagreement Sorted Portfolios

- I also form a high-minus-low disagreement portfolio based on individual analyst forecasts.
 - Data is from Anna Scherbina based on Diether, Malloy, and Scherbina (2002) & Sadka and Scherbina (2005) measure.
- The mean return of this portfolio is -1.14%/month (t = -5.9).
- Regression results are consistent with turnover-based portfolio results:

$$lpha$$
 eta_{Sum} Coef. -0.84 -0.89 t-stat (-3.6) (-2.2)

Regressions on monthly dummies are also (roughly) consistent.

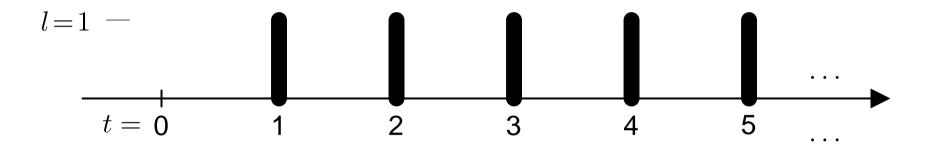
The Model


- The model HY develop uses the structure developed in:
 - Harrison and Kreps (1978), Scheinkman and Xiong (2003)
- Features:
 - Disagreement based on irrational overconfidence.
 - Prices greater most optimistic investor's valuation.
 - Volume accompanies changes in disagreement.
- Basic Setup:
 - Single stock paying quarterly dividends
 - True $E[D_t] = 0 \forall t$.
 - Two overconfident, risk-neutral groups A and B.
 - No short sales allowed.

The Model (Simplified)

- Suppose that the true $D_t = 0$.
- At the start of quarter t, groups A and B receive offsetting signals of +1 or -1 about D_t
- ullet A and B belive their signals are infinite precision, so:

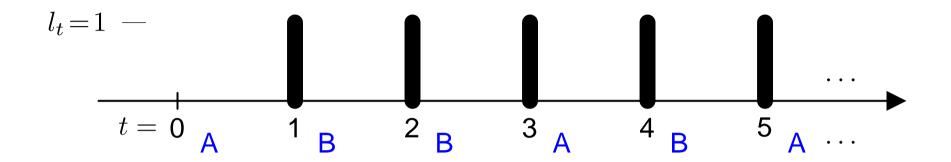
$$E^A[D_t]=+1$$
 A Optimistic
$$D_t=0$$
 (Rational Expectation)
$$E^B[D_t]=-1$$
 B Pessimistic


Simplified Disagreement Model

- Since A ignores B's signal, and B can't short, the price of this dividend will be \$1.
- Since B can sell the dividend to A for \$1, B will also value the dividend at \$1,
 - However, B will always sell the security to an A prior to the realization of the dividend.

Stock Valuation

• With quarterly dividends, equal uncertainty, and $r_q = 0.01$:

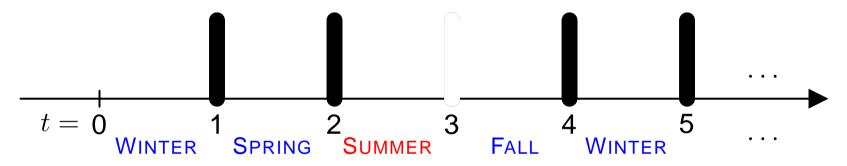


■ Because A's and B's rationally anticipate future disagreement, the price of the asset at t = 0 will be:

$$P_0 = \frac{1}{0.01} = \boxed{100}$$

• Note that $P_t = 0$ at all t, so returns are 1% below r_f .

Trading/Turnover


- The high valuation group (A or B) will always hold the asset when the uncertainty about the dividend is resolved.
 - Because all investors rationally anticipate future disagreement, investors are indifferent about holding the asset when signals are received.
- Thus, there will be large volume between periods of resolution of uncertainty.

Return Timing

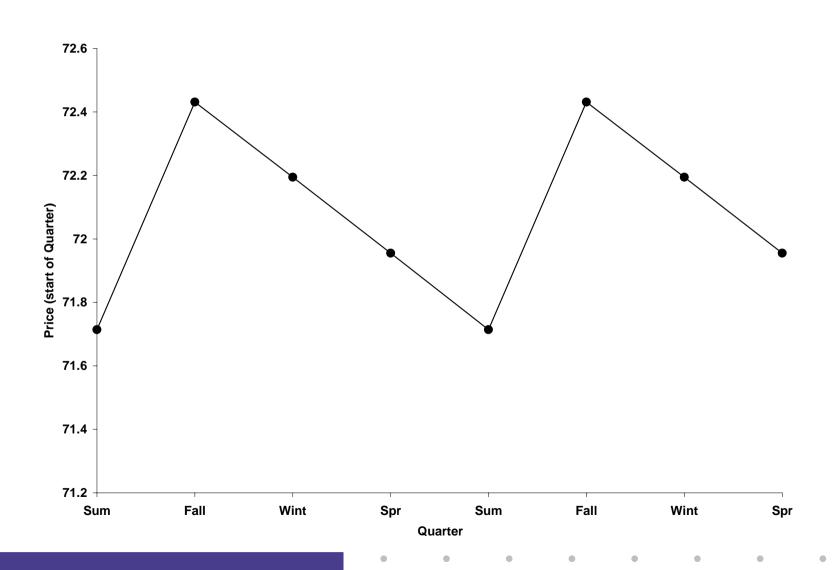
- What is responsible for the low returns?
 - Disagreement, or lack thereof, or the arrival of new signals don't cause low returns.
 - In the model, because the disagreement is anticipated, the price doesn't change when the signal is received.
 - The resolution of uncertainty associated with the dividend announcement causes the low returns.
 - The (overconfident) agents holding the security are surprised when the zero dividend is announced, and the price falls by \$1.

Seasonality

• In the HY model, agents don't receive signals in the summer quarter, so they agree that $D_{\text{Summer}} = 0$:

- Investors that hold the security over the summer don't (incorrectly) anticipate a \$1 dividend.
 - There is no surprise when $D_{\text{Summer}} = 0$ is announced.
 - ho \Rightarrow r(Summer) = 1%.
 - Over other quarters, $r_t = 1\% \left(\frac{\$1}{P_{t-1}}\right) \approx -0.33\%$.

Seasonality - Model Prediction


- This theoretical implication (of high summer returns) is inconsistent with the empirical findings in the paper
 - Empirically, we see low returns in the summer
- Note that this return pattern is precisely the implication of the HY model.
 - HY (equation A.10) states that:

$$P_{\text{summer}} < P_{\text{spring}} < P_{\text{winter}} < P_{\text{fall}}$$

where P_{summer} denotes the price at the beginning of the summer.

A plot of these prices looks like:

HY Model Prediction – Prices

Alternative Models?

- It seems like disagreement, at least as modeled here, can't be responsible for the price/returns patterns in the data.
 - Within this framework, you would need to argue that more information is released in summer than in non-summer months.
- Alternatives models might be:
 - Changes in disagreement are (consistently) not anticipated.
 - Investors bail out of the market in the summer, pushing down prices.
 - This "demand shock" is unanticipated by the market.

References

- Diether, Karl B., Christopher J. Malloy, and Anna Scherbina, 2002, Differences of opinion and the cross-section of stock returns, Journal of Finance 57, 2113-2141.
- Harrison, John M., and David M. Kreps, 1978, Speculative investor behavior in a stock market with heterogeneous expectations, Quarterly Journal of Economics 93, 323-
- Miller, Edward, 1977, Risk, uncertainly and divergence of opinion, Journal of Finance 32, 1151-1168.
- Scheinkman, Jose, and Wei Xiong, 2003, Overconfidence and speculative bubbles, Journal of Political Economy 111, 1183-1219.