Discussion of:

Testing Behavioral Finance Theories Using Trends and Sequences in Financial Performance

by Wesley Chan, Richard Frankel, and S.P. Kothari

Kent Daniel

Kellogg-Northwestern and NBER

Behavioral Finance – Motivations

- 1. The "anomalies" literature has caused many to question the standard efficient markets paradigm.
- 2. There is now a large catalog of return patterns inconsistent with standard asset pricing models:
 - Size, Reversal, Book-to-market, price- and earnings-momentum effects.
 - Accruals effects (Sloan (1996))
 - NOA effects (Hirshleifer, Hou, Teoh, and Zhang (2003))
 - Issuance effects (?)
 - "Liquidity risk" effects (Pastor and Stambaugh (2003))

Behavioral Finance – Motivations

- 1. Given the Fama critique, why are we so concerned about these anomalies?
 - High Sharpe Ratios relative to the market
 - Hansen and Jagannathan (1991), MacKinlay (1995)
 - Lack of correlation of returns with economic variables.
 - Out of sample evidence.

Sharpe Ratios – The data

From Pastor and Stambaugh (2003) - Table 10:

Panel A. Weights in the ex-post tangency portfolio, Jan 1966- Dec 1999

MKT	SMB	HML	MOM	LIQ^V	LIQ^E	Sharpe ratio
100.00	_	_	_	_	_	0.12
35.08	5.83	59.10	_	_	_	0.22
20.05	16.07	43.03	20.85	_	_	0.33
22.34	18.77	36.41	_	22.49	_	0.31
17.32	22.33	29.10	_	_	31.25	0.40
17.70	20.62	34.23	11.86	15.59	_	0.37
15.88	22.51	29.56	6.47	_	25.58	0.42

Including accrual, issuance effects increases max SR significantly.

Sharpe Ratios

Hansen and Jagannathan (1997) show that, based on the FOC from the investor portfolio optimization problem in a Rational-expectations setting:

$$E[\tilde{m}\ \tilde{r}] = 0$$

for the excess return \tilde{r} of any asset of portfolio, that:

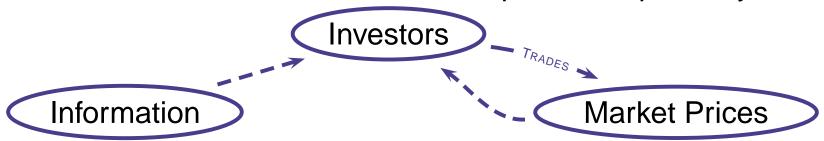
$$\frac{\sigma_m}{E[m]} = \frac{-1}{\rho_{m,r}} \frac{E[r]}{\sigma_r}$$

$$\frac{\sigma_m}{E[m]} \ge \frac{E[r]}{\sigma_r}.$$

That is, the high Sharpe ratios we see are only consistent with extreme preferences.

The Standard EMH Model

The standard RE model assumption is that all investors "see" all available information, and process it perfectly ...



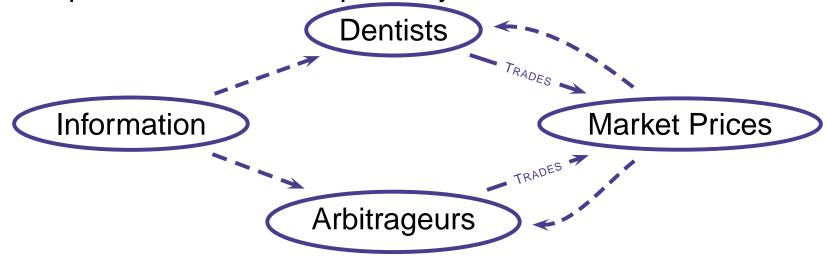
The Standard EMH Model

■ The standard RE model assumption is that all investors "see" all available information, and process it perfectly ...

Much evidence (and common sense) shows that many investors don't process information perfectly:

Much evidence (and common sense) shows that many investors don't process information perfectly:

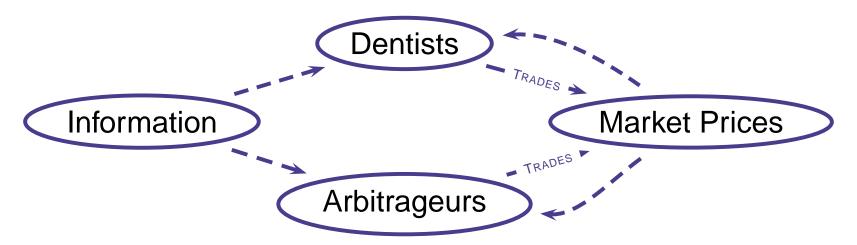
Much evidence (and common sense) shows that many investors don't process information perfectly:



However, the standard response to this argument is that, if market prices went wrong, Arbitrageurs would force them back into line,

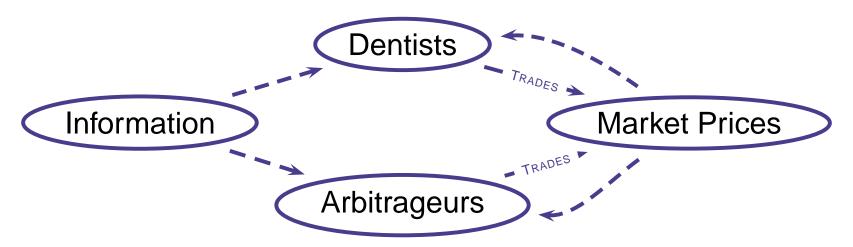
Much evidence (and common sense) shows that many investors don't process information perfectly:

Behavioral Biases and Prices



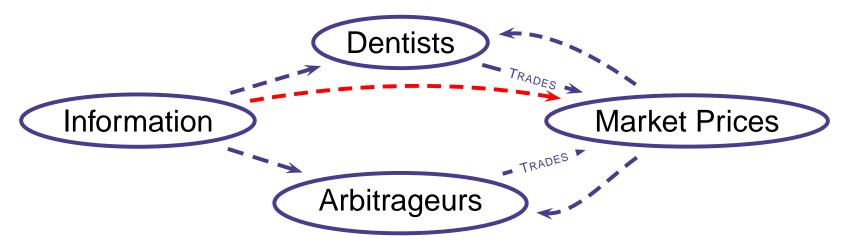
However, there is new theoretical and empirical evidence suggesting that arbitrage is incomplete:

Behavioral Biases and Prices



- However, there is new theoretical and empirical evidence suggesting that arbitrage is incomplete:
 - Shleifer and Vishny (1997) ("Limits to Arbitrage")
 - Daniel, Hirshleifer, and Subrahmanyam (2001)
 - Mitchell, Pulvino, and Stafford (2002) (e.g., Palm/3-Com)

Behavioral Biases and Prices



- Mowever, there is new theoretical and empirical evidence suggesting that arbitrage is incomplete:
 - Shleifer and Vishny (1997) ("Limits to Arbitrage")
 - Daniel, Hirshleifer, and Subrahmanyam (2001)
 - Mitchell, Pulvino, and Stafford (2002) (e.g., Palm/3-Com)
- Incomplete arbitrage might mean that the behavioral biases of the "dentists" are reflected in security return patterns.

CFK note three papers models that link behavioral biases to return patterns:

- CFK note three papers models that link behavioral biases to return patterns:
 - Barberis, Shleifer, and Vishny (1998):
 - Representativeness and conservatism in the interpretation of earnings information.

- CFK note three papers models that link behavioral biases to return patterns:
 - Barberis, Shleifer, and Vishny (1998):
 - Representativeness and conservatism in the interpretation of earnings information.
 - Daniel, Hirshleifer, and Subrahmanyam (1998):
 - Investor overconfidence in private information.
 - Time variation induced by self-attribution bias.

- CFK note three papers models that link behavioral biases to return patterns:
 - Barberis, Shleifer, and Vishny (1998):
 - Representativeness and conservatism in the interpretation of earnings information.
 - Daniel, Hirshleifer, and Subrahmanyam (1998):
 - Investor overconfidence in private information.
 - Time variation induced by self-attribution bias.
 - Hong and Stein (1999):
 - Groups of "newswatchers" and "momentum traders."

CFK test the implications of the BSV model:

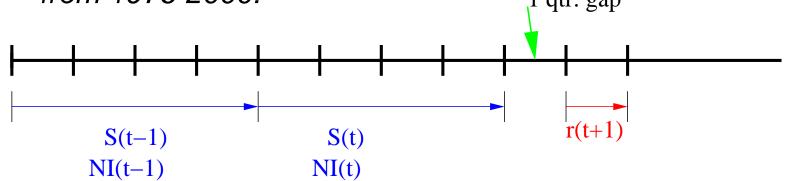
- CFK test the implications of the BSV model:
 - Conservatism:
 - Underweighting new data; Overweighting of priors.
 - On an announcement of good earnings, investors underreact, generating earnings momentum (PEAD).

- CFK test the implications of the BSV model:
 - Conservatism:
 - Underweighting new data; Overweighting of priors.
 - On an announcement of good earnings, investors underreact, generating earnings momentum (PEAD).
 - Representativeness:
 - However, following a series of good earnings announcements, representativeness causes people to infer a trend too quickly, pushing up the price too far.

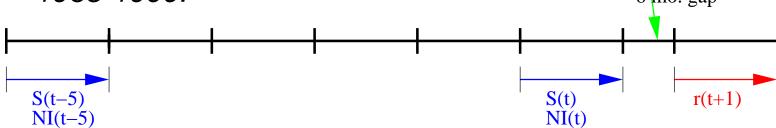
- CFK test the implications of the BSV model:
 - Conservatism:
 - Underweighting new data; Overweighting of priors.
 - On an announcement of good earnings, investors underreact, generating earnings momentum (PEAD).
 - Representativeness:
 - However, following a series of good earnings announcements, representativeness causes people to infer a trend too quickly, pushing up the price too far.
 - CFK also argue that the implications of the DHS and HS models are virtually identical to those of BSV.

Basic Empirical Tests

Medium Horizon Tests use Quarterly COMPUSTAT Data from 1976-2000:
1 qtr. gap

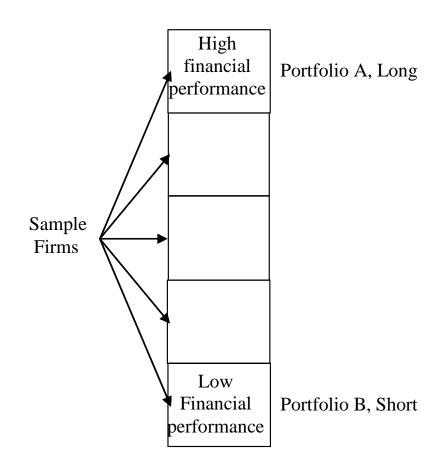


Long Horizon Tests use Annual COMPUSTAT Data from 1965-1999:



Also look at past OI growth and past returns.

Long-Short Portfolio Construction



"Difference" = Return (A) – Return (B)

Prediction: "Difference" < 0

Results - Basic Tests

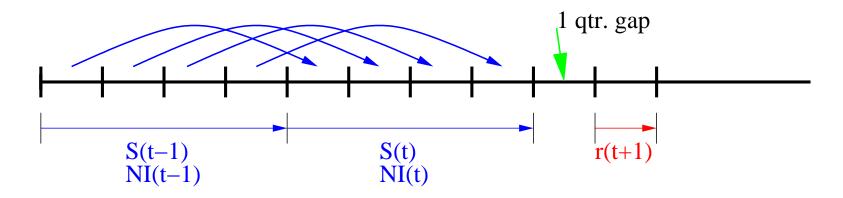
- One Year Growth Measures (Tables 3-4):
 - NI, OI and past return measures reveal strong earnings momentum.
 - Much of the return to the earnings momentum strategy occurs around earnings announcements

Results - Basic Tests

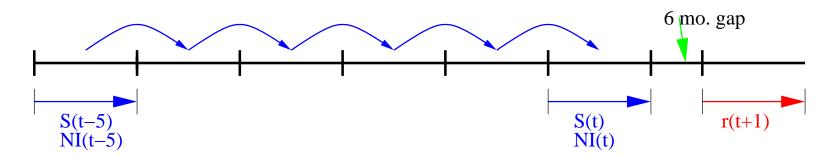
- One Year Growth Measures (Tables 3-4):
 - NI, OI and past return measures reveal strong earnings momentum.
 - Much of the return to the earnings momentum strategy occurs around earnings announcements
- Five-Year Growth Measures (Table 5):
 - No evidence of "reversals" for Sales, NI or OI measures.
 - If anything, there is some evidence of continuation.
 - Return reversals evidence consistent with extant evidence.

Consistency Tests

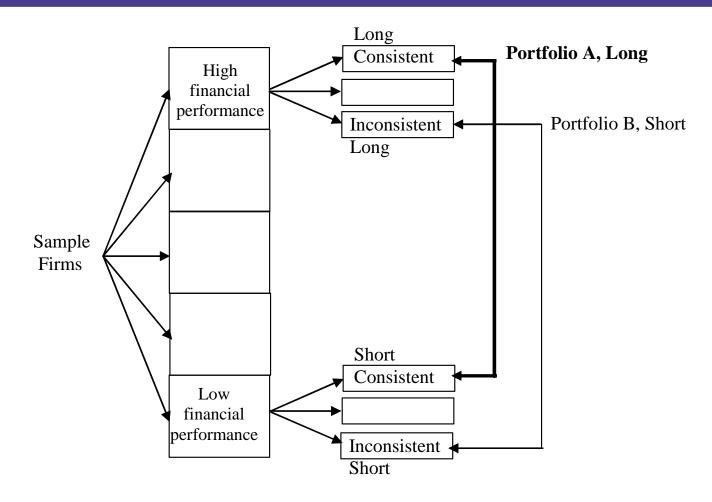
Medium Horizon Consistency Tests:



Long Horizon Consistency Tests:



Consistency Test Portfolio



"Difference" = Return (A) – Return (B)

Prediction: "Difference" < 0

Consistency Test Results

- One Year Growth Measures (Table 6):
 - Marginal consistency effects for NI, OI
 - Strong consistency effect for past return measures (t = 7.6 at 6 mos.)

Consistency Test Results

- One Year Growth Measures (Table 6):
 - Marginal consistency effects for NI, OI
 - Strong consistency effect for past return measures (t = 7.6 at 6 mos.)
- Five-Year Growth Measures (Table 7):
 - No consistency effects for Sales, NI or OI growth measures.
 - Return reversals somewhat stronger with consistency.

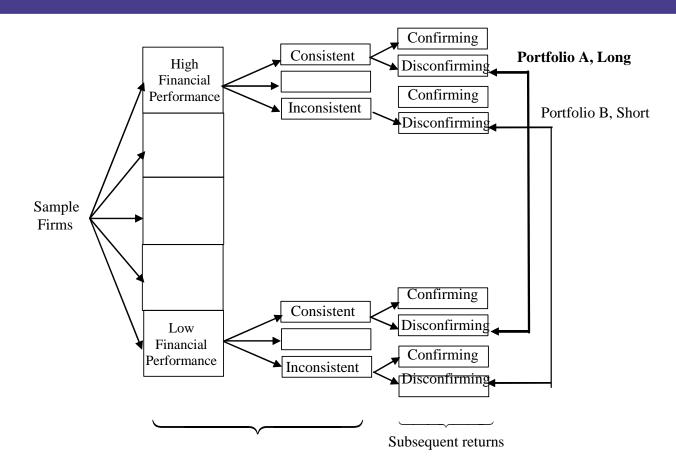
Econometric Issues:

- One Year Growth Measures (Table 6):
 - Further sorting high and low past growth firms into "consistent" and "inconsistent" performers probably results in further stratification of the growth measures.
 - Also, momentum effect is known to be much stronger for extreme firms
 - i.e., in highest and lowest 5% or 10% of firms
 - Thus, it might be important to impose a tighter control on past performance.

Econometric Issues:

- One Year Growth Measures (Table 6):
 - Further sorting high and low past growth firms into "consistent" and "inconsistent" performers probably results in further stratification of the growth measures.
 - Also, momentum effect is known to be much stronger for extreme firms
 - i.e., in highest and lowest 5% or 10% of firms
 - Thus, it might be important to impose a tighter control on past performance.
- Five-Year Growth Measures (Table 7):
 - The same stratification is probably occurring for the 5-yr. past ret. measures, and could be driving the results.

Disconfirming L-S Portfolio



"Difference" = Return (A) – Return (B)

Prediction: "Difference" < 0

What Hypothesis are CFK Rejecting?

- CFK fail to reject the null that past financial-growth measures are unrelated to future returns at long horizons.
 - CFK do this for more complicated measures of past performance than examined by Dechow and Sloan (1997) or by ?.
- However, CFK don't address biases in interpreting other sources of information
- Is it possible that representativeness and conservatism are influence the marginal investor's interpretation of non-financial information.

Interpreting the Results

- These results provide no evidence that long-horizon earnings trends results in low future returns:
 - This is inconsistent with the BSV implication of negative long-horizon earnings-return correlations.
- Of course, these results raise several questions:

Interpreting the Results

- These results provide no evidence that long-horizon earnings trends results in low future returns:
 - This is inconsistent with the BSV implication of negative long-horizon earnings-return correlations.
- Of course, these results raise several questions:
 - 1. What are investors doing to cause the predictability that is observed?

Interpreting the Results

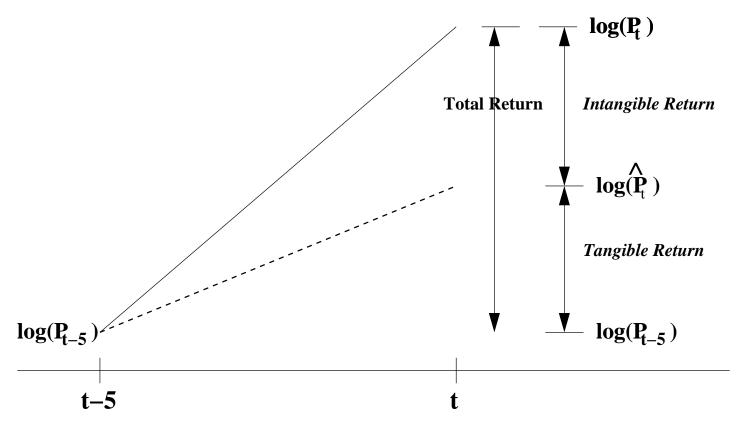
- These results provide no evidence that long-horizon earnings trends results in low future returns:
 - This is inconsistent with the BSV implication of negative long-horizon earnings-return correlations.
- Of course, these results raise several questions:
 - 1. What are investors doing to cause the predictability that is observed?
 - 2. Lakonishok, Shleifer, and Vishny (1994) find that past-sales growth strongly forecasts future returns. What is this paper doing differently?

Predictability \Rightarrow **Misinterpretation**

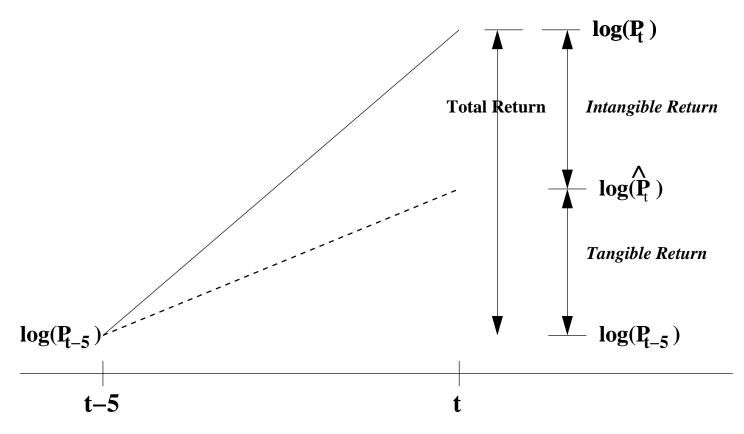
The FOC from the investor's optimization problem is:

$$\frac{E[Y_{i,T}|\mathcal{F}_t]}{P_{i,t}} = e^{r_i(T-t)}$$

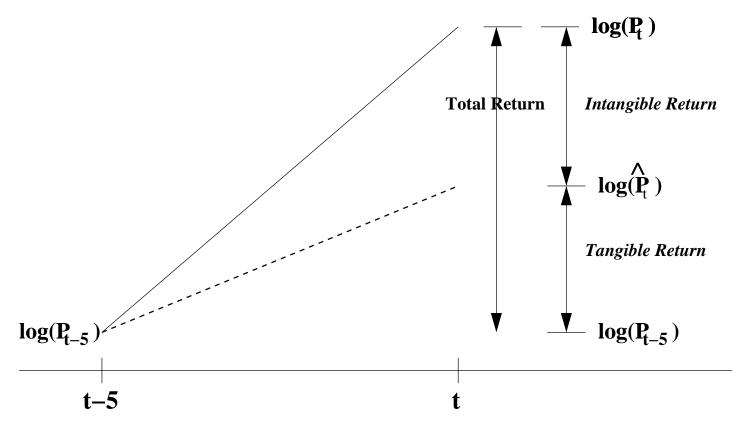
- If this is violated (as it appears to be in the data), then either:
 - 1. Investors don't optimize;
 - 2. Frictions prevent investors from optimizing;
 - 3. We're not measuring risk right;
 - 4. Investors aren't correctly using \mathcal{F}_t in forming expectations of future payoffs.
- If it is 4., then there must be some identifiable way in which the representative investor is incorrectly processing the information in \mathcal{F}_t .



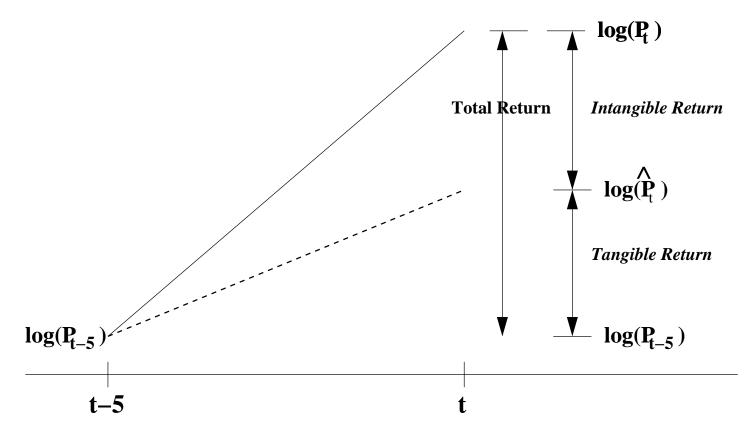
In Daniel and Titman (2002), we attempt to identify what information is mis-processed



We define the tangible return is the fitted component of the cross-sectional regression of the 5-year log-return on fundamental information:



- Empirically, we use unanticipated book, sales, cash-flow, or earnings-return as tangible information proxies
 - or on all of these.



■ The R^2 s for the full cross-sectional regression is about 60%.

Intangible Return Reversals

	Const	bm_{t-5}	$r^B(t\!-\!5,t)$	$r^{I(B)}$	R^2_{avg}
1	1.206	0.097	-0.062	-0.344	36.63%
	(4.64)	(1.37)	(-0.92)	(-3.45)	
	Const	sp_{t-5}	$r^{SLS}(t\!-\!5,t)$	$r^{I(S)}$	R^2_{avg}
2	1.041	0.084	0.105	-0.333	21.32%
	(3.93)	(1.67)	(1.92)	(-3.85)	
	Const	cp_{t-5}	$r^{CF}(t-5,t)$	$r^{I(C)}$	R_{avg}^2
9	1.348	0.073	-0.049	-0.479	47.03%
	(5.42)	(1.05)	(-1.11)	(-4.36)	
	Const	ep_{t-5}	$r^{ERN}(t\!-\!5,t)$	$r^{I(E)}$	R^2_{avg}
12	1.323	0.064	-0.003	-0.454	45.58%
	(5.37)	(0.97)	(-0.09)	(-4.10)	
	Const	$r^{T(Tot)}(t\!-\!5,t)$		$r^{I(Tot)}$	R^2_{avg}
13	1.278	-0.125		-0.450	59.67%
	(5.21)	(-1.76)		(-3.87)	

Note: Coefficients are $\times 100$;

 R_{avg}^2 is the avg. R^2 from the cross-sectional regressions.

Analyst Forecasts

- Our results are consistent with Dechow and Sloan (1997), who also argue against the simple earnings-growth extrapolation story that LSV propose.
- However, Dechow and Sloan (1997) present evidence that stock prices reflect biases in analysts' forecasts.

Reinterpreting LSV's Results

- In DT(2003), we show that LSV obtain their results because their total sales growth measure is also a proxy for share issuance:
 - We find that composite share issuance is a strong predictor of future returns.
 - We find no evidence of overreaction to LSV growth measure after controlling for share-issuance.
 - Also, if the 10% of the firms that had the greatest issuance activity are removed from the sample, future returns are no longer associated with past cash-flow growth.

DHS model implications

CFT argue that the BSV, DHS and HS models have similar implications:

We note that neither Hong and Stein (1999) nor Daniel et. al. (1998) rely on representativeness or conservatism *per se* to motivate the behavior of traders in their models. *However, in each case, their assumptions can be viewed as operationally similar to investors' inferences subject to representativeness and/or conservatism heuristic applied to a sequence of prior firm performance. (p. 11)*

DHS and BSV model implications

... if consistent sequences of public signals imply a correspondence between private signals and public signals, Daniel et. al. predict investors will over-infer from a sequence of good news announcements in forming trending expectations, which ultimately leads to overpriced stocks and subsequent price reversals (see figure 1 and section III.B in Daniel et. al. 1998) (pp. 10-11)

DHS (1998) – Figure 1

Investor Psychology and Market Reactions

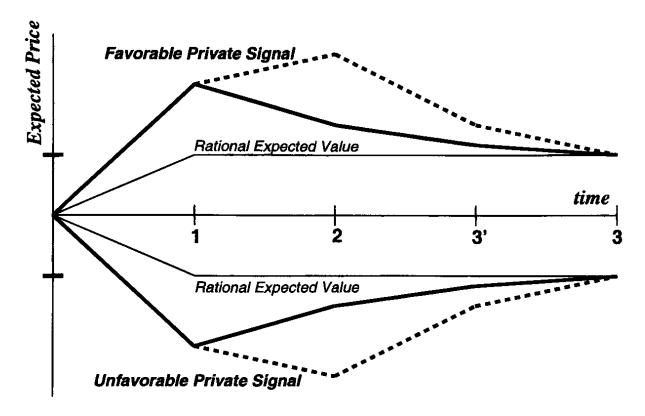


Figure 1. Average price as a function of time with overconfident investors. This figure shows price as a function of time for the dynamic model of Section III with (dashed line) and without (solid line) self-attribution bias.

DHS (1998) – Figure 4

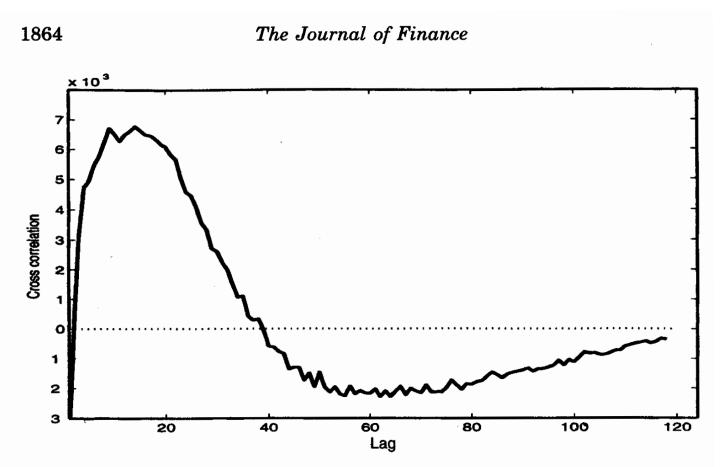


Figure 4. Correlation between information changes and future price changes. This figure shows the set of average sample correlations between the Δe_t and price changes τ periods in the future $\Delta P_{t+\tau} = P_{t+\tau} - P_{t+\tau-1}$. These are calculated using the simulated dynamic model of Section III.B.3.

DHS (1998) – Figure 4

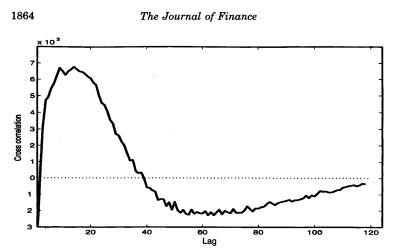


Figure 4. Correlation between information changes and future price changes. This figure shows the set of average sample correlations between the Δe_t and price changes τ periods in the future $\Delta P_{t+\tau} = P_{t+\tau} - P_{t+\tau-1}$. These are calculated using the simulated dynamic model of Section III.B.3.

To evaluate the above conjecture, we again calculate average correlations using our simulation as follows. For each $\tilde{\phi}_t$ (for t=2,120) we calculate the "earnings" surprise, defined as

$$\Delta e_t = \tilde{\phi}_t - \Phi_t = \tilde{\phi}_t - E[\tilde{\phi}_t | \phi_2, \phi_3, \dots, \phi_{t-1}], \tag{21}$$

the deviation of ϕ_t from its expected value based on all past public signals. Then, we calculate the set of sample correlations between the Δe_t and price changes τ periods in the future $\Delta P_{t+\tau} = P_{t+\tau} - P_{t+\tau-1}$. These correlations are then averaged over the Monte Carlo draws. The average correlations are plotted in Figure 4. This simulation yields the following result.

Result 4: In the biased self-attribution setting of Section III.B, short-lag correlations between single-period stock price changes and past earnings are positive, and long-lag correlations can be positive or negative.

DHS (1998) – Result 4

Result 4: In the biased self-attribution setting of Section III.B, short-lag correlations between single-period stock price changes and past earnings are positive, and long-lag correlations can be positive or negative.

Picky Econometric Issues

- 1. Better control for past performance in consistency tests.
- 2. FF(93) benchmark portfolios are VW, yet test portfolios here are EW.
 - This will bias up the calculated returns of illiquid portfolios.
 - Use VW test portfolios (or at least buy and hold)
- 3. How are splits, dividends, issues, *etc.*, dealt with in calculating per-share growth rates?

Directions for Behavioral Finance

- There are now a host of behavioral models that can capture general features of the data,
- But, a model is only valuable to the extent that it predicts as yet untested features of the data
- Thus, more careful empirical explorations of the implications of these models are necessary
- Something that is generally missing from all of these analyses is magnitudes.
 - Can parameterized behavioral models match what we see in the data?
 - How to treat arbitrageurs is an issue

References

- Barberis, Nicholas, Andrei Shleifer, and Robert Vishny, 1998, A model of investor sentiment, *Journal of Financial Economics* 49, 307–343.
- Daniel, Kent D., David Hirshleifer, and Avanidhar Subrahmanyam, 1998, Investor psychology and security market under- and over-reactions, *Journal of Finance* 53, 1839–1886.
- _____, 2001, Overconfidence, arbitrage, and equilibrium asset pricing, *Journal of Finance* 56, 921–965.
- Dechow, Patricia M., and Richard G. Sloan, 1997, Returns to contrarian investment strategies: Tests of naive expectations hypotheses, *Journal of Financial Economics* 41, 3–27.
- Hansen, Lars P., and Ravi Jagannathan, 1991, Implications of security market data for models of dynamic economies, *Journal of Political Economy* 99, 225–262.
 - ——, 1997, Assessing specification errors in stochastic discount factor models, *Journal of Finance* 52, 557–590.
- Hirshleifer, David, Kewei Hou, Siew Hong Teoh, and Yinglei Zhang, 2003, Investor misperceptions of balance sheet information: Net operating assets and the sustainability of financial performance, Ohio State University Working Paper.
- Hong, Harrison, and Jeremy C. Stein, 1999, A unified theory of underreaction, momentum trading and overreaction in asset markets, *Journal of Finance* 54, 2143–2184.
- Lakonishok, Josef, Andrei Shleifer, and Robert W. Vishny, 1994, Contrarian investment, extrapolation and risk, *Journal of Finance* 49, 1541–1578.
- MacKinlay, A. Craig, 1995, Multifactor models do not explain deviations from the CAPM, Journal of Financial Economics 38, 3–28.

- Mitchell, Mark, Todd Pulvino, and Erik Stafford, 2002, Limited arbitrage in equity markets, Journal of Finance 57, 551–584.
- Pastor, Lubos, and Robert F. Stambaugh, 2003, Liquidity risk and expected stock returns, Journal of Political Economy 111, 642–685.
- Shleifer, Andrei, and Robert Vishny, 1997, The limits to arbitrage, *Journal of Finance* 52, 35–55.
- Sloan, Richard, 1996, Do stock prices fully reflect information in accruals and cash flows about future earnings?, *Accounting Review* 71, 289–315.