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Abstract

Numerous studies have documented the failure of consumption-based pricing models
to explain observed patterns in stock and bond returns. This failure has sometimes
been attributed to frictions, transaction costs or durability. If such frictions are
important, they should primarily affect the higher frequency components of asset
returns. The long-swings, or lower-frequency comovements should be less affected.
Consequently if transaction costs are important, tests of the consumption based
asset pricing model which concentrate on lower-frequency components may be more
successful.

We investigate this hypothesis using a variety of diagnostic tests. We first use
coherence analysis and bandpass filtering analysis to show that, while there is a
complete lack of correlation between asset returns and consumption growth at fre-
quencies higher than about 0.7 years™ (swings longer than 1.4 years), the coher-
ence/correlation between the two series at lower frequencies is above 60%. We per-
form Hansen and Jagannathan (1991) bounds tests, x? tests of moment restrictions,
and Hansen and Jagannathan (1997) specification tests of three consumption-based
models of the asset-pricing kernel: Time-separable preferences with power utility,
the Abel (1990) “Catching up with the Joneses” preferences, and Constantinides
(1990) habit-formation preferences. While none of these models perform well at the
quarterly horizon, the performance of the Abel and Constantinides models improves
strikingly at the two-year horizon.
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1 Introduction

Most research on consumption-based asset pricing focuses on short-horizon returns. The starting

point is the familiar intertemporal Euler equation
1 =E; [mz:T+ngT',t+T (1)

where R}, denotes the gross real cumulative return on any asset j from date ¢ to date ¢ +
and mJ,, denotes the intertemporal marginal rate of substitution (IMRS) between wealth at

date t and wealth at date t + 7. The unconditional version of this Euler equation is
l=F |:m;rTR]T',t+T} : (2)

In the literature on consumption-based asset pricing, m] is modeled as a function of aggregate
consumption, and the implications of (1) or (2) are tested for return horizons 7 equal to one
month or one quarter.

The literature typically rejects the conditional Euler equation (1). Presumably, the uncondi-
tional Euler equation (2) should be easier to fit to the data. Equation (2) only requires that the
IMRS correctly price equity returns ”on average”. Yet, Cochrane and Hansen (1992) show how
difficult it is to even fit this unconditional Euler equation. The problem is that, to fit equation

2), one needs substantial covariation between m;,_ and R’,, . Formally, equation (2) implies
t+T1 g t+T Y.

E [R;HT - ;,tw} E [ }1t+ ] = —cov (m;ﬁ, R;t+7) = —Om0rPm,r (3)

where R}, . denotes the gross real risk-free rate from date ¢ to date ¢+ 7, 0,,, and o denote the
standard deviations of my, . and R}, respectively, the correlation coefficient between my, . and
R7,. . is denoted pp,,, and we use the implication of equation (1) that E[m[, | = E[1/R},, ]
The left-hand side of equation (3) is the mean equity premium, ”discounted” by the mean
inverse risk-free rate. To generate a large mean equity premium, a model of m{, . must display
substantial negative covariation with equity returns. Within the context of consumption-based
asset pricing, this would require substantial positive covariation between equity returns and
consumption growth.

Empirically, the contemporaneous correlation between real quarterly CRSP VW index re-

turns and quarterly non-durable and services consumption growth is only 13.9%. Cochrane and

Hansen (1992) call this low correlation between the return on market proxies and consumption



growth the “correlation puzzle.”! A number of factors have been proposed to account for the
low correlations between stock returns and aggregate consumption growth at short-horizons, in-
cluding uninsurable cross-sectional heterogeneity,? fixed costs of adjusting consumption,® costs
of portfolio adjustment,* and even small deviations from perfect rationality.®> While these factors
could substantially affect the co-movements of asset returns and aggregate consumption at high
frequencies, they should be less disruptive to the theory at longer horizons. Simple correlations
between consumption growth and the VW index return suggest that there may be merit in this
argument: the correlation between one-year consumption growth and one-year returns, lagged
by a quarter, is 30.3%.

If consumption-based pricing operators perform better at long-horizons, this would provide
indirect evidence that the basic intuition underlying the equilibrium asset pricing theories of
Lucas (1978), Breeden (1979), and Grossman and Shiller (1982) is sound; the well-documented
failures of this theory at matching high-frequency data could be attributed to transaction costs,
market imperfections, and uninsurable heterogeneity. This analysis would not be a substitute
for formal modeling of these frictions, but would at least suggest that this approach is on the
right track. If, however, consumption-based pricing proves useless at all frequencies, this would
represent a substantial challenge to equilibrium pricing theory. In all such models, financial
assets are vehicles for transferring consumption across time and random states. It is not clear
what sort of model can capture this intuition without implying a theoretical linkage between
aggregate consumption and asset returns at some horizon.

In this study, we investigate the ability of of consumption growth to explain asset returns
at low frequencies using a variety of diagnostic tests. We first use multivariate spectral analysis
to characterize to co-movements of consumption growth and excess equity returns. We find
that, while the coherence between these variables is insignificant at high frequencies (above 0.7
years™!), at lower frequencies this coherence is high and statistically significant. We confirm
the coherence analysis using bandpass filtering analysis similar to that suggested by Baxter

and King (1994). We find no statistically significant correlation between the two series at high

!Even if the correlation between consumption growth and equity returns is relatively small, equation (3) could
be satisfied with an extremely large variability of the the IMRS (for example, by assuming a high degree of risk
aversion). Cecchetti, Lam, and Mark (1993) try this strategy. While they can match the mean equity premium,
they have difficulty matching both the first and second moments of the equity and risk-free return data.

2See, e.g., Constantinides and Duffie (1996), Lucas (1994), Heaton and Lucas (1995)

3Grossman and Laroque (1990), Marshall (1994), Marshall and Parekh (1998).

4Luttmer (1996), He and Modest (1995).

5See Cochrane (1989).



frequencies. However, at lower “business-cycle” frequencies, we find correlations of over 50%.
Curiously, we find that the correlation declines significantly at very low frequencies.

We then turn to more formal tests of consumption-based asset pricing at longer horizons.
We look at standard time-separable power utility, the Abel (1990) “Catching up with the Jone-
ses” preferences, and the Constantinides (1990) habit-formation preferences. Our investigation
uses three diagnostic tools: first, we apply the Hansen and Jagannathan (1991) mean-variance
analysis, modified to take into account the unconditional correlation between the pricing kernel
and asset returns; second, we apply the standard x? of the moment restriction in (2). The third
diagnostic we use follows Hansen and Jagannathan (1997). They note that some preference
specifications may result in an extremely volatile m;, but one which does not really “fit” the
data better. However, because of the increased volatility, such a preference specification may
still yield a low x2. Hansen and Jagannathan (1997) and Hansen, Heaton, and Luttmer (1995)
suggest a specification test which is immune to this problem. We employ this test as a further
diagnostic tool.

According to our empirical results, none of the consumption-based models performs well at
the quarterly horizon. However, when the horizon is lengthened to two years, versions of the
Abel (1990) and Constantinides (1990) models of preferences perform fairly well. In particular,
no significant violations of the Hansen-Jagannathan restrictions are found, the x? statistics are
insignificantly different from zero, and the Hansen and Jagannathan (1997) diagnostic reveals
rather small discrepancies from equation (2).

Other papers in the literature have asked whether the restrictions of economic theory are
better satisfied with longer-horizon returns than with monthly or quarterly returns. Brainard,
Shapiro, and Shoven (1991) find that stock returns correspond more closely to the theoretical re-
turn to invested capital at longer horizons. Cochrane and Hansen (1992), however, find that the
performance of time-separable preferences deteriorates as the horizon lengthens. Finally, Daniel
and Marshall (1997) use a vector ARCH model to estimate the conditional covariance between
equity returns and the pricing kernel implied by various models. All models do poorly at the
quarterly horizon. At the two-year horizon, however, they find that the mean and variance of this
conditional covariance series approximate the corresponding moments of the conditional equity
premium as long as sufficient time-nonseparability is incorporated into preferences. Further-
more, the variation through time in this conditional equity premium is to some extent reflected
in variation in the conditional covariance series.

Although we find evidence of a strong unconditional relationship here, the high unconditional
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correlations between consumption growth and asset returns at business cycle frequencies could
be caused by co-movement of the expected growth and return series as opposed to co-movements
of the innovations. This would mean that the average conditional correlation would be low. We
investigate this in Section 4 of the paper and find that this is indeed the case. We show that
the bound on the average conditional correlation is even more stringent than the bound on the
unconditional correlation. We conjecture why this may be the case; for the moment, it remains
a puzzle.

The remainder of the paper is organized as follows: In section 2, we present evidence that
although consumption-growth is virtually uncorrelated with asset returns at high frequencies,
it displays substantial covariation with asset returns at business-cycle frequencies. In section
3 we characterize the preference specifications to be explored in the remainder of the paper;
we discuss the model diagnostics to be used; and we evaluate particular parameterizations of
these models at various horizons. In that section, we also discuss problems in modeling long
horizon returns that were pointed out by Cochrane and Hansen (1992). We argue that these
problems can be resolved, in principle, by the use of time-nonseparable preferences as advocated
by Abel (1990) and Constantinides (1990). In section 4, we provide a more formal analysis of
the Abel and Constantinides models in which the model parameters are chosen to minimize the
Hansen and Jagannathan (1997) specification criterion. Section 5 investigates the conditional

correlation between returns and consumption growth, and Section 6 summarizes.

2 Low-Frequency Correlation of Asset Returns and Con-
sumption Growth

In this section, we ask whether the Cochrane and Hansen (1992) correlation puzzle is a phe-
nomenon at all frequencies, or just at high frequencies. We use two techniques to explore this
question: multivariate spectral or coherence analysis, and an analysis of the correlations of

bandpass filtered consumption growth and asset returns.

2.1 Coherence Analysis

To assess the frequency-by-frequency breakdown of the correlation between consumption growth
and a market proxy, we perform coherence analysis of the consumption growth and excess VW
index return series. Essentially, what the coherence analysis does is to split each of the two

series up into a set of Fourier components at different frequencies, and then to determine the
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This figure shows, in the upper panel, the coherence between quarterly real non-durable and services consumption
growth and quarterly real returns on the CRSP VW index over the period 1947:1-1994:1. The lower panel shows
the phase relationship, in degrees, between the two series at the stated frequency. A hamming window and
a smoothing parameter (n/m) of 16 is used. Details of the coherence and phase calculations are given in the

Appendix.

Figure 1: Coherence and Phase plots for consumption Growth and excess VW index
Returns

correlation of a set of Fourier components for the two series around each frequency. The method
we use for generating the coherence series is described in the appendix. In addition, the method
yields the phase relation between the two series, which is a measure of how far the series must
be shifted to maximize the correlation of the sets of Fourier components.

In Figure 1, the upper panel gives the coherence between the two series, as a function of the
frequency. Approximate 95% confidence intervals for both coherence and phase are plotted as
dashed lines in the figure. We also plot the 95% confidence interval that the coherence is above
zero, which is the dot-dashed line in the figure.

Figure 1 shows that the coherence is low at high frequencies. However, for lower frequencies,
but not the very lowest, the coherences are relatively large, and are considerably more than

two standard errors away from zero. This suggests that any correlation that arises between the

5These are calculated following Bloomfield (1976). For the coherence series, the standard error is inversely
proportional to the level of the coherence, and in calculating these confidence intervals we have assumed that
the true coherence is equal to the estimator.
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The construction of this figure was identical to that for Figure 1, except that the VW index return was lagged
by two quarters before calculating the coherence.

Figure 2: Coherence and Phase plots for Consumption Growth and Lagged excess
VW index Returns

consumption growth and asset return series is due to the co-movement at these lower frequencies.

The lower panel of Figure 1 displays the phase as a function of frequency. Notice that at a
frequency of zero, the phase is zero, and then decreases approximately linearly with frequency
up to a frequency of about 1 year~!. This suggests a constant-length lead/lag relationship
between the two variables, since the approximate lead/lag length equals the phase multiplied
by (1/frequency * 360). Performing this calculation, Figure 1 tells us that return series leads
the consumption growth series by approximately two quarters. To verify this, in Figure 2 we
lag the VW return series by 2 quarters and rerun the coherence analysis. The coherence values
increase slightly at most frequencies, except at frequency zero where it increases dramatically.
The phase is now approximately zero for frequencies less than one year—1.

In summary, the coherence analysis suggests while there is little relation between consump-
tion growth and asset returns at high frequencies, there is a strong relationship at low frequencies,

but that the relationship is not contemporaneous: consumption growth lags the market return

by about two quarters. This is consistent with frictions where there is an extra cost of adjusting



Figure 3: Bandpass Filter Frequency Response

This figure shows the gain of the three filters used in the bandpass filtering analysis over the frequency range
from 0 to 1 years—!. The gain from 1 to 2 years—! is not shown, but is approximately 1 for the high filter and 0
for the other two.

1.4
"Trend" filter
1.2+ _ — — - "Cycle" filter -
) —— "High—Pass" filter
1+ // \\\‘_\ /,‘\\\‘__’,_-,
’ N 4
/ N /
0.8 / \\ /
= 0.8 . _
S / N ,
(&) / .
— \ /
L / \
C 0.6+ / \ _/ ]
/ \ /
./
, (
0.4 /- /N -
/ / \
/ / \
0.2 / / \ i
/ , \
7/ \
P s \ _
(0] = - = = FERN P T | N S - T T s T
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (1/years)

consumption quickly rather than slowly, then this is exactly the sort of relationship one might

expect to observe.

2.2 Bandpass Filtering Analysis

To verify the coherence results, we also conduct a time-series bandpass filtering analysis, in which
we break the consumption growth and asset returns series into different components using a set
of moving-average (MA) filters. To do this, we utilize a bandpass filtering analysis similar to
that suggested by Baxter and King (1994), and utilized by Baxter (1994).

The MA filters we utilize here are each designed to pick out a certain range of frequencies in
the data. The filters are symmetric two-sided filters, and consequently do not introduce phase
distortions into the data. Though the design of the filters uses spectral analysis techniques, the
filters themselves are simple MA filters. The process of filtering a data series is conducted by
simply convolving the data series with the set of filter weights, as with any MA filter.

The filter design is done using the FIRLS (finite impulse response least squares) function in
MATLAB." This function takes as an input a desired piecewise linear spectral response function,

and then finds the length n (here 31 quarters) MA filter which provides a spectral response which

"This function is taken from MATLAB’s the Signal Processing Toolbox.



is as close as possible to the desired spectral shape (in a weighted least-squares sense).

We constructed three filters. To conform to the business cycle literature, we call these the
trend, cycle and high filters. The trend filter is designed to eliminate all swings in the data
shorter than 8 years (i.e., with a frequency of higher than 0.125 years !.). The cycle filter is
designed to pass all components with wavelength between 1.5 and 8 years, and the high filter is
designed to eliminate all swings longer than 1.5 years. The spectral gain obtained for the three
filters are shown in Figure 3.* While we would like these filters to have a gain of 1 over the
bandpass region and zero elsewhere, this is not achievable with a finite length filter.® Instead,
this figure shows that the filter frequency responses are about as good as is achievable, given
the constraints.

The motivation for eliminating high frequencies from the data has already been discussed.
The motivation for eliminating the correlations at very low frequencies is that there may be
long-run changes in the structure of the economy that affect the co-movement of consumption
and returns on financial assets. (Changes in the legal and institutional framework of the pension-
fund industry is one example.) At a more basic level, since other macroeconomic variables move
together at business cycle frequencies, and not elsewhere, this may also be true for consumption.

The correlations between various measures of consumption growth and VW return series,
filtered using each of the three filters in turn, are presented in Table 1. We present seven
alternative measures of consumption: total and non-durables and services, and the components
of total consumption: durables, non-durables, and services. We also present consumer services
excluding the implied service flow from owner-occupied housing, and nondurables plus services
excluding the service flow from owner-occupied housing. The procedure for constructing each of
these correlations was to filter each of the two series, and then calculate the maximum correlation

Pmaz Detween the two series over a lead-lag range of eight quarters, that is

min{T,T+7}

Prmaz = Max (U(r);(Ac)> (T : ) 2 (rerBa) —8s7s8. (4)

-7 t=max{1,1+7}

where r; and Ac; are demeaned returns and consumption growth over period t, respectively, and

o(r) o(Ac) are the corresponding sample standard deviations for the series.

8We also demean the set of MA coefficients output from the FIRLS procedure for the cycle and high filter
weight series. Since these are finite length filters, if the sum of the MA coefficients is zero than the filters will
eliminate any integrated (I(1)) component present in the data.

9Baxter and King (1994) discuss the reasons that an “ideal spectral shape” is not achievable in practice.



Table 1: The Correlation of Bandpass Filtered Returns and Consumption Growth
Series

The quarterly real CRSP VW index returns and the real non-durable and services consumption growth series
(1947:1-1997:4), were each filtered using one of the three filters, as described in the text. The maximum correla-
tion coefficient between the two filtered series, pmaz, is computed as in equation (4). The value of Py, as well
as the maximizing value of 7 are given in the Table for each filter. The Monte-Carlo determined p-values are
given in parentheses. These indicate the probability of obtaining a number at least as large as the sample value
assuming that the returns are 4.i.d. normal, and independent of consumption growth. Seven measures of con-
sumption are used: total, and nondurables plus services ("ND&S”); the components consumer durables ("Dur.”),
non-durables ("NDur”), and services (”Serv.”); and then two measures which exclude the implied service flow
from owner-occupied housing: consumer services (”SxH”) and nondurables plus services ("NDSxH”).

Filter

trend | cycle | high

Total | pmas || 0.1399 (0.748) | 0.5725 (0.002) | 0.2209 (0.116)
Trnaz ) 2 1

ND&S | pmes | 0.0884 (0.702) | 0.5497 (0.004) | 0.1662 (0.443)
Tmaz 8 2 1

Dur | pomas | -0.1053 (0.717) | 0.5343 (0.006) | 0.2053 (0.176)
Trnaz 0 2 -3

NDW | prmae | -0.0521 (0.666) | 0.5092 (0.010) | 0.2735 (0.019)
Trnaz 5 2 1

Serv | pmae || 0.0148 (0.631) | 0.4733 (0.021) | 0.1449 (0.644)
Trnaz 8 2 4

SXH | poas || -0.1427 (0.752) | 0.4248 (0.056) | 0.1344 (0.732)
Tmaz 8 2 4

NDS<H | pmes || 0.1504 (0.760) | 0.5360 (0.006) | 0.1739 (0.393)
Tmaz 8 2 1

We use Monte-Carlo analysis to determine the significance levels of the correlations in Table
1 both in order to account for the fact that we are reporting the maximum of 17 coefficients,
and to account for the serial correlation induced in the two series by the filtering operations.
The p-values reported in Table 1 are therefore the probabilities of obtaining a coefficient at least
as large as the one found if the quarterly returns series were i.i.d. normal, and independent of
consumption growth.

As predicted by the coherence analysis, the maximum correlation between the two series
after filtering using the cycle filter is high. For example, the maximized correlation coefficient
is 54.97% for ND&S consumption, with a one-tailed p-value of 0.4%. Also, as predicted by
the coherence analysis, the correlation is maximized when the returns series is lagged by two

quarters.
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We find little correlation between the returns series and any of the high-pass filtered con-
sumption growth series. The maximized correlation coefficient is about 20% for most measures
of consumption, and is insignificantly different from zero. An exception is the non-durable series,
which is significant at the 1.9% (one-tailed) value. To test whether the correlation is different
at the high and business cycle frequencies, we conduct an additional Monte-Carlo simulation.
Note that the correlation between the business-cycle filtered series is approximately 0.5 for all
measures of consumption. In our simulation exercise, we impose the null hypothesis that the
correlation between the high-pass filtered series is also 0.5 in population. We then compute the
probability of obtaining a maximum observed correlation of 0.27 (the highest correlation in the
last column of Table 1). We find that this probability is less than 0.001. We conclude that the
correlations between high-pass filtered series are significantly less than the correlations between
business-cycle filtered series.

Interestingly, the maximum correlation of the trend components of the two series is also
insignificant, at -8.8% (one-tailed p-value of 70.3%) for non-durable and services. A Monte-
Carlo simulation shows that the probability of getting a measured trend-correlation of less than
zero is 4.8%, when the true correlation between the two series equal to 0.5 at all frequencies.
Thus, it appears that the correlation is indeed lower at trend frequencies than at business cycle
frequencies.

The normalized, cycle-filtered asset returns and consumption growth series are plotted in
Figure 4.1 We have also lagged the VW index return series by two quarters. The plot shows
the very strong relationship between the two series in this frequency range from the 50’s through
the early 80’s. The late 80’s are the only period in the plot where the relation is not extremely
strong, perhaps because of the 1987 crash.

3 Unconditional Moments Tests of the Asset Pricing Re-
lation

Section 2 documents that consumption growth is more highly correlated with equity returns at
business cycle horizons than at short horizons, and indeed that there is insignificant correlation
at frequencies of less than 0.67 years . This suggests that there may be frictions which “de-
link” consumption and asset price movements at high frequencies. If so, tests of the consumption

based asset pricing model may be considerably more successful at pricing longer-horizon returns.

0T normalize the series, we divide each series by its sample standard deviation.
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Figure 4: Filtered Asset Returns and Consumption Growth Series
This figure plots the business-cycle filtered real consumption growth (Total) and filtered, two-quarter-lagged,
VW returns series. The filtering method is described in the text. The period is 1947:1-1994:1, but the first
and last four years are truncated in the filtering process. Each series is normalized by dividing by its standard
deviation.
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For the remainder of the paper, we explore this conjecture at various horizons.

3.1 Preference Models

3.1.1 Time-Separable Preferences

The most widely-studied (and widely-rejected) preference specification in the consumption-based
pricing literature is time-separable power utility. In this specification, agents solve the following

maximization problem:
clﬂ
max U =E, Z ﬁ] (5)

{Ct+J }J 0 j=0

subject to the usual budget constraint. The 7-period IMRS is:

mi = g7 (CHr)W‘ (6)

Ct

An important treatment of long-horizon returns with time-separable preferences can be found in
Cochrane and Hansen (1992). They use the method of Hansen and Jagannathan (1991) to look

at the implications of time-separable utility at horizons ranging from one quarter to five years.
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They find that the performance of time-separable utility actually deteriorates as the horizon
lengthens. This failure of time-separable preferences at long horizons is largely caused by a high
implied risk-free rate. Aggregate consumption is a (stochastically) growing series. In the time-
separable model, agents seek to transfer some of the high future consumption to the present
by borrowing. A counterfactually high risk-free rate is needed to discourage this borrowing.
(Recall that net borrowing must equal zero in equilibrium.) However, in a stochastic model this
effect is partially countered by the precautionary motive for saving: agents might wish to insure
against the possibility of consumption downturns. As the horizon lengthens, this precautionary
demand becomes weaker, since the empirical probability of a consumption downturn is smaller
for the longer horizons. (For example, Cochrane and Hansen (1992) note that there is no five-
year period in post-war US data over which aggregate consumption declines.) As a result,
the equilibrium risk-free rate implied by the time-separable model is counterfactually high for
longer-horizon data.

What is needed, then, is a reason why agents would be willing to save at low interest rates,
even though they know that their future consumption is likely to grow. One possible reason is
that agent’s within-period utility-of-consumption changes through time. Preference specifica-
tions with this property include the Constantinides (1990) habit-formation preferences and Abel
(1990) “catching-up-with-the-Joneses” preferences. In these specifications, the marginal utility
of a given level of consumption grows through time. Agents refrain from borrowing to increase
current consumption because they know that they will need the consumption more in the fu-
ture. (As Weil (1989) has pointed out, the same effect could be induced by having a subsistence
point that grows deterministically in time.) To put this another way, the problem discussed by
Cochrane and Hansen (1992) can be resolved, in principle, if agents are fearful, not of a decline
in consumption, but of a decline in consumption relative to some reference point, where the
reference point itself grows at the same rate that consumption grows. To resolve the risk-free
rate puzzle in this way, we will utilize the Abel (1990) and Constantinides (1990) models in our

empirical tests.!’ In the following sections, we formalize these preference specifications.

HWe note that we have also investigated preferences in which utility is based on consumption relative to a
deterministic trend with similar results for the unconditional moment tests.
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3.1.2 The Abel (1990) ”Catching-Up-With-the-Joneses” Preferences

Let ¢; denote the per-capita consumption at date ¢. The agent solves

oo — ho )Y
max U = Et Z ﬂ] (Ct+j H—J) (7)
{erri}52o ) 1—7

subject to the usual budget constraint, where
n(l —9)
o — dm+l 4

The interpretation is that agents compare their consumption to the consumption of their neigh-

hy = Z(Slcm,n>0 0<8<1. (8)

bors (the ”Joneses”) in the recent past. In the formal model, the neighbors’ consumption is
represented by ¢, and agents behave as if they have a subsistence point equal to 1 times a
weighted average of the per-capita consumption levels over the past m periods. Notice that
agents treat h; as exogenous: the marginal utility of a fixed level of consumption inherits the
upward trend in ¢, but agents cannot alter the h; process by their own actions. (Of course, in
equilibrium ¢; = ¢.)

With Abel preferences,

. Ctir = higr)
mt+7’ ﬁ ( ht) . (9)

Let the value function V(W,h) be defined as the maximum value of the objective function
that can be attained given initial wealth W and an initial subsistence point h. We define the
coeflicient of relative risk aversion (denoted RRA;) by

WVWW(W h)

A =— .
fifid Viv (W, h)

(10)

For Abel preferences,

Ct

A = 11
RR t "}/Ct — ht ( )

Notice that the coefficient of relative risk aversion is time-varying, and everywhere exceeds ~.
The risk-free rate puzzles will be partially resolved by the Abel specification, since, empirically,

declines in (¢; — h;) are observed more frequently than declines in ¢;.

3.1.3 Constantinides (1990) Habit-Formation Preferences

Constantinides (1990) models agents as maximizing an objective function of the same form as

(7) with the following alternative speciﬁcation for hy:

n(l—46)

he = 5 — (5m+1

Z&cm,n>0 0<d6<1. (12)
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The difference between (8) and (12) is that in (12) the stochastic subsistence point h, is a function
of the agent’s own consumption ¢, rather than the per-capita consumption. The marginal rate

of substitution is now

Z‘FT = /87— MUt (13)
where the marginal utility of consumption MU, is defined by
- —6) & _
MUt = (Ct — ht) 6 6m+ Zz:; 66 Et [ Ctyi — ht+i) 7} (14)

With habit-formation preferences, agents consider the effect of their current consumption on
future values of h;. The presence of conditional expectations in equation (14) reflects this fact.
These conditional expectations must be computed when we construct m;. We do this as follows.

First, define the variable D, by:

n(l—2¢6) X, (66)2 [t myi — htferi)_’y].

D,=1-—
t § — dm+1 (Crom — ht_m)—'y

(15)

The variable D; behaves as a stationary stochastic process. Equations (13) and (15) imply that,

in the Constantinides model,

o /67' (Ct—H' - ht—&—T)i7 Et+TDt+T+m

my, ., = — 16
" (Ct - ht) K ED i, ( )

Since D is stationary, we can fit an autoregressive time-series model for this variable, and use
the fitted values as our estimate of F;D;,,,. For most models, the likelihood ratio statistics
testing n lags against n — 1 lags in the autoregression for D, (for n between 1 and 5) favor
four lags. We estimate a fourth-order autoregression in D, and project the fitted regression m
periods into the future.

We consider Constantinides preferences separately from Abel preferences for two reasons.
First, it is possible that the behavior of m] in (13) may differ substantially from that implied
by (9). A second, and more important reason, is that habit formation preferences do not
accentuate risk aversion in the way that Abel’s preferences do:'? the coefficient of relative risk
aversion implied by habit-formation for a given specification of {v,7,, 5} is smaller than that
given in (11). From the perspective of the individual agent, Abel preferences are time-separable,

since a change in an individual’s ¢; does not affect his marginal utility with respect to ¢;; for

12This point is extensively discussed by Constantinides (1990), Ferson and Constantinides (1991), and Boldrin,
Christiano, and Fisher (1995).
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1 # 0. For such preferences, the coefficient of relative risk aversion equals the curvature of the

U”(C)
ure):

In contrast, habit formation preferences incorporate true time nonseparability: The marginal

per-period utility function U, as measured by —C'

utility at date t is affected by changes in the state-contingent consumption plan for dates t+i, i =
1,...,m. In response to a wealth shock at date t, the agent with habit-formation preferences
adjusts her state-contingent plans for future consumption so as to optimally adjust Ay, @ =
1,...,m. This attenuates the impact of a given wealth shock on the objective function, as
compared to the Abel specification. In particular, higher n does not increase RRA; as much
as in (11). While RRA; cannot be computed analytically for our model of habit-formation,
Constantinides (1990) and Ferson and Constantinides (1991) obtain closed-form solutions for
RRA,; in the context of a simpler model. They show that, for preference parameters similar to

ours, the mean coefficient of relative risk aversion is not too far above .13

3.2 Tests of Long-Horizon Pricing Using Unconditional Moments

In Section 3.3 we redo the long-horizon Hansen-Jagannathan analysis of Cochrane and Hansen
(1992) using Abel (1990) and Constantinides (1990) preferences, and find that there is indeed
considerable support for consumption based asset pricing models at long horizons, and very little
support at short horizons. In this section we describe the long-horizon Hansen-Jagannathan tests

and test-statistics we utilize.

3.2.1 The Hansen-Jagannathan Analysis

Cochrane and Hansen (1992) derive the Hansen and Jagannathan (1991) mean-variance bounds
using a linear projection of a candidate stochastic discount factor on the space of portfolio
payoffs. In this section, we describe an alternative derivation that is helpful in pointing out the
importance of the unconditional correlation between the pricing kernel and the mean-variance
efficient portfolio.

Equation (3) can be rearranged to give:

IR f{m}l o (%) | (17)

where we have supressed the superscripts and subscripts. Let us define the left-hand side of

13Boldrin, Christiano, and Fisher (1995) report a similar result.

16



equation (18) as the asset’s Sharpe ratio.!* Since this equation must hold for all assets in the
economy, and since E[m] and o, are independent of the choice of the asset, this equation shows
that an asset or portfolio’s Sharpe Ratio is linearly related to its correlation with the pricing
kernel. An asset with is uncorrelated with the pricing kernel must have a Sharpe Ratio of
zero, and an asset with is perfectly negatively correlated with the pricing kernel must have the
maximial Sharpe Ratio in the economy.

Hansen and Jagannathan (1991) recognize that the correlation coefficient —p,, , cannot be

less than —1, and thus:

EG[’;L] > (E[R] ;f[m]_l> (18)

where the ”>” must hold for every asset and every feasible portfolio. Hansen and Jagannathan
(1991) derive the strongest bound implied by (18): in effect, they evaluate the right-hand side
of (18) at the portfolio return with the highest Sharpe ratio, which is simply the unconditional

mean-variance efficient portfolio. This portfolio has a Sharpe ratio of

Elm]

where (2 is the covariance matrix of returns. For any given value of E[m], this gives a bound on

> SR = \/(B[R] ~1- E[m]= Y~ (B[R] ~ 1 - E[m] )

om which is dependent only on the asset return first and second moments, and is independent
of preferences.
Equation (17) also tells us something about the importance of the correlation between asset

returns and the pricing kernel. This equation can be rewritten:

o 1
mo— SR;.
E[m] (pm,Rj> ¢

where pn, g, denotes correlation between m and any portfolio j. This equation says that, for any

asset or portfolio of assets with SR; > 0, the lower bound on ¢, — oo as p T 07: if the pricing
operator m has an arbitrarily small negative correlation with some asset with a positive Sharpe
ratio, this implies an arbitrarily tight bound on o,,. This clearly ties in with our results in Section
2: the positive correlation between equity returns and consumption growth suggests a negative
correlation between equity returns and the marginal rate of substitution in consumption that
serves as the consumption-based proxy for m. If the correlation between short-horizon equity
returns and short-horizon consumption growth is positive but small, the implied bound on o,

is likely to be much tighter than the standard Hansen-Jagannathan bound.

14 The risk-free rate equals Ey[m¢y1] !, so our definition of the Sharpe ratio differs from the usual definition
by a Jensen’s inequality correction. If the risk-free rate were constant, the two definitions would coincide.
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3.2.2 Projected Hansen-Jagannathan Bounds Tests

Following Cochrane and Hansen (1992), we note that if m satisfies (2), then so will the projection

(denoted m™*) of m onto the set of asset returns and a constant:
m*=a+R b, (19)

where

m=a+R -b+e,

and E[eR] = 0. If the correlation of m with the elements of R is very small, then the variance of
m* will be very small relative to that of m. As in equation (18), this means that a higher value
of o, will be required to satisfy the HJ bounds when implemented using m*. This test therefore
provides a tighter restriction than the standard HJ test. We present Hansen-Jagannathan tests
both for m and m*. We also use the procedure described in section 3.1 of Hansen, Heaton, and
Luttmer (1995) to test formally whether the Hansen-Jagannathan mean-variance restrictions

are satisfied.

3.2.3 A x? test of the moment restriction E[mR] =1

Because we are not estimating model parameters in our test, it is straightforward to directly
test the moment restriction E[mR — 1] = 0. for the n assets being considered. If we define
g = (mR; — 1), the sample moment estimator is gy = (1/7") Y g;. We can construct a test

statistic
JT = Tgi[SglgT, (20)

where Sg is a consistent estimator of the spectral density matrix of g; at frequency zero, and
where this spectral density matrix is estimated using the Newey-West procedure.!> As shown
in Hansen (1982), Jr is asymptotically distributed x* with n degrees of freedom. In our case,
we use two distinct asset returns, so n = 2.

For the time-separable model, Cochrane and Hansen show that this x? test (for these two

assets) strongly rejects the time-separable power utility model for 4’s of less than 50.'6

15The number of lags used equals 8, 11, 15, and 19 lags for the quarterly, yearly, two-year, and three-year
horizons, respectively.
16See Cochrane and Hansen (1992), Table 2, p. 129.
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3.2.4 The Hansen-Jagannathan (1997) Specification Test

As pointed out in Hansen and Jagannathan (1997), x* tests of the moment restriction (2),
like that discussed in Section 3.2.3, can be misleading in comparing specifications. If a model
produces a highly volatile m, the eigenvalues of the spectral-density matrix may be huge, so the
weighting matrix Sy in equation (20) may be close to singular. This would imply a “small” x>
statistic, even when the pricing errors are large.'”

To help to assess whether observed low y? test statistics result from a superior fit of a given
model, we utilize a distance measure derived by Hansen and Jagannathan (1997).'® We denote
this measure the "HJ97 statistic”. This test constructs an estimator the mean squared distance
between the candidate stochastic discount factor m, and the set (M) of valid pricing kernels
(that is, the set of y’s that satisfy E(yR — 1) = 0). Formally, this distance measure, 62, is
defined by

8= min By, — my)? (21)

As stated, this minimization is over a set of random variables M. Equation (8) in Hansen,
Heaton, and Luttmer (1995) show that 6 can be computed more simply as the solution to the
conjugate maximization problem. We follow their procedure in computing CZQT (the finite-sample
analogue to 62) for the various models of m; we study.!?

HJ97 statistics are not directly comparable across different investment horizons without some
normalization; here we derive a modified HJ97 statistic with appropriate normalization to allow
such a comparison. The 7 period long horizon misspecification measure (in our notation) is:

2 _ : T T2 2 2
6-= min B(y —m)” = p; +o7 (22)

where p, = E(§] —m]) and 02 = var(§] —m] ), where ¢ is the argmin of (22). If we assume that
the “best-fit” pricing kernel §” will not change with horizon, then the 7 period pricing kernels

in (22) are simply products of the single period pricing kernels: §; = II_,9;, ; and m] =

"For example, the x? test discussed in 3.2.3 (and presented by Cochrane and Hansen (1992)), strongly rejects
for small 7’s (Jr = 5.1 for v = 40 for our sample), but fails to reject the time-separable model for a +’s over 200
(Jr is equal to 0.88 for v = 240). However, the HJ97 statistic 62 (defined in equation (21)) is equal to 0.257 for
~v =0 and 0.416 for v = 240. In other words, despite the low x? statistic, the m for the v = 240 model is further
from M than the naive (and obviously sub-optimal) specification m; = 1, for all ¢.

18See also Hansen, Heaton, and Luttmer (1995) (HHL), Section 1.2).

19Hansen, Heaton, and Luttmer (1995) show that if m; € M (that is, if § = 0), then the limiting distribution
of VTdy is degenerate. For this reason, we do not use the HJ97 statistic to test whether m, is a valid pricing
kernel.
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II7_ym¢,; ;. Since, for small 7, both y and m should be close to one, and since:

N
IV (14+6) =1+ 6

i=1
we have that: T
Y —mi = Hz:13)t1+z’—1 - Z—:lml}—i-i—l ~ Z(gtl—&-i—l - mt1+z'—1)
i=1
Thus, under this approximation,
My = T UL,

and

ol=r1-0° - VR(1),

where the variance ratio V R(7) is defined in the usual way as the ratio of the variance of

(y" —mT) to the variance of (y* —m!), divided by 7:

VR(T) = —
M=
It follows that the HJ97 statistic can be written
E=12+otxr 247102 VR(7). (23)
We now define the modified HJ97 statistic 61 as
$t\2 p; o, o 2
(6) =St =pto -V R(7) (24)

For 7 = 1, (61)? is equal to the standard HJ97 statistic in (22). To implement (24), we compute
i as the argmin of the sample version of equation (22).2°) we calculate the sample y™ and 67,
and form the square-root of the sample version of our modified statistic, CZI In the empirical
section, we use the modified HJ97 statistic df to assess the fit, of the model at different horizons.

The modified HJ97 statistic tells us exactly what we want to know about how the char-
acteristics of (y — m) change as the test horizon lengthens: if (y, — m,) is characterized by
rapid, negatively autocorrelated movements which are “washed-out” at longer horizons, then

the variance-ratio in (23) will be small and cﬁ will be small for long horizons. This would tell

20HHL show that the § € M which minimizes the sample version of equation (22) is ¢ = m; — R’«a, where «
is the vector of Lagrange multipliers of the original minimization problem, and where the F.O.C. defining « is
given in their equation (10). Therefore, (§; —m;) = &R. u, and o, are the sample mean and standard deviation
of this series.
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us that eliminating high frequency components improves the fit of the model. If, on the other
hand, (y — m) is characterized by positively correlated, long-swings, then the variance-ratio
in (23), and df will be large for long horizons, and the modified HJ97 statistic will indicate a

poorer fit to the data at longer-horizons.

3.3 Empirical Results

We now present the results from our empirical analysis of the models presented in Section
3.1, using the tests presented in Section 3.2. We use quarterly data from 1952-1997. Detailed
description of the data can be found in the Data Appendix. We follow the standard practice
in the literature in using consumer expenditures on nondurables and services(”ND&S”) as our
primary measure of consumption. We also perform the analysis for consumer expenditures on
nondurables ("ND”). Finally, The data compiled by the Bureau of Economic Analysis data
for consumer expenditures on services includes a series measuring the imputed rental value
of owner-occupied housing. Rather than being compiled from observed surveys on consumer
expenditure, this series is a construct. It has rather different properties from other consumption
series. In particular, Marshall and Parekh (1998) note that the covariance between the growth
rate of this series and equity returns is negative. To allow for the possibility that this series
is substantially mis-measured, our third measure of consumption is ND&S minus this imputed

rental value of owner-occupied housing.

3.3.1 Time-Separable Preferences

We examine time-separable preferences for four horizons: one quarter, one year, two years, and
three years. We set (8 equal to 1.0, and we vary the curvature parameter v. The behavior of
this model for ND&S consumption is displayed in Figure 5.2! The solid “U-shaped” curves in
Figure 5 plot the Hansen-Jagannathan bounds, calculated using two returns: the real CRSP
VW index return and the real 3-month T-Bill return. To facilitate comparison across different
investment horizons, we normalize the plots to put both mean and variance of the pricing kernel
in quarterly terms. To do this, we divide the resulting lower bound on o, by /7, where 7 is
the horizon length in quarters (1, 4, 8 or 12 in this plot). The mean is normalized by plotting
E[m]*". In the upper panel of Figure 5 we plot, the mean-standard deviation loci of m, implied

by time-separable preferences with ND&S consumption, for the four horizons and for values of

21We also conducted this analysis using non-durable consumption and using ND&S minus the service flow
from owner-occupied housing. The results are very similar to those fore ND&S, and are not displayed.
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Figure 5: Hansen and Jagannathan bounds tests for Time-Separable Preferences,
Non-Durable and Services Consumption

The four solid curves in both panels are the Hansen-Jagannathan bounds on the quarterly standard
deviation of the pricing kernel, inferred from the asset return data at the four horizons: one quarter,
one year, two years, and three years. In the top panel, the dotted lines plot the means/standard
deviations for the time-separable model marginal rate of substitution for the following four horizons:
one quarter (“+”), one year (“*”), two years (“circle”), and three years (“x”). We set 8 = 1 and we
let the value of v range from 0 to 200; for each line the spacing between the symbols is v = 5. In
the bottom panel, the dashed lines are generated by running a regression of the candidate discount
factors on the set of real returns (in this case the VW index and the T-Bill rate). The means and
standard deviations of the fitted regressions are plotted for v = 0, ..., 200. Consumption is measured
as expenditures on consumer nondurables plus services; the time period is 1947:1-1997:4.
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ranging from 0 to 200. In the lower panel, we project the time-separable model’s pricing kernel
onto the set of asset returns as described in Section 3.2.2, and plot the mean and standard
deviation of m* (defined in equation (19) against the same H-J bounds.

Figure 5 confirms the failure of the time-separable model that has been noted by many
previous studies. At every horizons from one quarter through three years, the (mean, standard
deviation) loci of the pricing kernel implied by this model are substantially outside of the Hansen-
Jagannathan bound. As in Cochrane and Hansen (1992), the longer horizons are further from
the bound than the quarterly horizon. We test formally these Hansen-Jagannathan mean-
variance restrictions using the procedure described in Hansen, Heaton, and Luttmer (1995).%
The failure of the time-separable model is generally confirmed. In particular, the Hansen-
Jagannathan restrictions for the projected kernel are rejected at the 1% marginal significance

2 or, for the quarterly horizon, for values of ~y

level for all horizons except when ~ is near zero
exceeding 200.%*

One should not, however, take these results as indicating that time-separable preferences can
fit the data with 4’s near zero or (for the quarterly horizon) near 200. When x? statistics are
calculated using equation (20). The statistics reject the model for all values of v. In particular,
the smallest values of these x? statistics are 24.8, 16.8, 14.9, and 12.32 for horizons of one
quarter, one year, two years, and three years, respectively. All of these values exceed 10.60,
which is the 0.5% critical value for a x? statistic with two degrees of freedom. The modified
HJ97 statistics, given in equation (24), tell the same story. These statistics range between 0.273

and 0.437, implying that the root-mean-squared deviation of the model’s pricing kernel from

the set of valid kernels is between 2730 bp and 4370 bp per quarter.

3.3.2 Time-Nonseparable Preferences: An Overview of the Empirical Results

In this section, we conduct an analysis of the Abel and Constantinides models analogous to
that done in section 3.3.1 for time-separable preferences. That is, we look at the models’
performance as curvature increases. While the model with time-separable preferences has only
two parameters, (3 (the subjective discount rate) and ~ (the curvature parameter), the Abel
and Constantinides models have five parameters: (3, 7, ¢ (the rate at which the habit stock

depreciates), n (the ratio of mean consumption to mean habit stock) and m (the number of

22See Hansen, Heaton, and Luttmer (1995), section 3.1.

BWhen v = 0 (risk-neutrality), this test has p-values of 0.073, 0.048, 0.074, and 0.056 for horizons of one
quarter, one year, two years, and three years, respectively.

24The p-value for the quarterly horizon when v = 200 is 0.087.
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lagged consumptions that enter the habit stock). In this subsection, we proceed somewhat
informally: We simply fix {3, 8,7, m} at values where the models perform fairly well®® and we
vary 7, as in figure 5. In section 4, below, we consider the models’ performance when the
parameters are chosen optimally.

Note that equation (14) for the marginal utility of consumption in the Constantinides model
only makes sense if this marginal utility is positive. If the second term in equation (14) exceeds
the first term, the expected effect of additional consumption on the future habit stocks would
outweigh the effect on current period utility. In that case, it would be optimal for the consumer
to reduce consumption via free disposal. In addition, the right-hand side of equations (9) or
(14) could be negative or complex if (¢, — hy) is negative. We discard any parameterizations of

these models where either of these anomalies occurred.

3.3.3 The Abel Model

For the Abel model, we set n = 0.8; 6 = 0.7; f = 1; and m = 8. Figure 6 is analogous to Figure
5. The upper panel plots the mean-standard deviation loci of m; implied by Abel with ND&S
consumption, for the four horizons, and for various values of the curvature parameter . The
lower panel is the analogous plot for the projection of Abel model pricing kernel onto the set of
asset returns.

The upper panel shows that the model pricing kernels with ND&S consumption satisfy the HJ
bounds at all horizons when v = 16-20. The lower panel, where the pricing kernels are projected
onto the space of asset returns, give a somewhat different story. While the two-year horizon
comes closest to the HJ bounds, none of the point estimates implied by the model actually
satisfy these bounds. However, when the Hansen-Jagannathan mean-variance restrictions are
tested formally using the Hansen, Heaton, and Luttmer (1995) procedure, the distance between
the HJ bound and the (mean,variance) loci of the pricing kernels is significantly different from
zero only for the quarterly horizon at low values of 7. The greater success of the longer horizons
is a direct result of the higher correlation of the pricing kernel with the VR return at the one
and two-year horizons. At one and two years the maximum correlation exceeds 0.5, more than
double that at the one-year horizon.

The x? statistics, calculated using equation (20) give similar results. These statistics are

graphed in Figure 7. For each of the four return horizons, the dashed line displays the value of

25We conduct a preliminary search in which we set 3 = 1.0 and we vary 1 and § from 0.5 through 0.9, we vary
~ from 0 through 30, and we vary m from 2 through 20.
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Figure 6: Hansen and Jagannathan bounds tests for Abel Preferences, for Non-
Durable and Services Consumption

The four solid curves in both panels are the Hansen-Jagannathan bounds on the quarterly standard
deviation of the pricing kernel, inferred from the asset return data at the four horizons: one quarter,
one year, two years, and three years. In the top panel, the dotted lines plot the means/standard
deviations for the Abel model marginal rate of substitution, as given in equation (9, for the following
four horizons: one quarter (“+”), one year (‘**”), two years (“circle”), and three years (“x”). The
model parameters are n = 0.8, 6 = 0.7, m = 8, 3 = 1. The means and standard deviations of the
fitted regressions are plotted for v = 0, ..., 30. In the bottom panel, the dashed lines are generated by
running a regression of the candidate discount factors on the set of real returns (in this case the VW
index and the T-Bill rate). Consumption is measured as expenditures on consumer nondurables plus

services; the time period is 1947:1-1998:4.
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Figure 7: x? statistics and Hansen-Jagannathan (1997) statistics for Abel Preferences.

The figure plots the x? statistic (left panel) and the HJ97 statistic (right panel) implied by the Abel
model at the quarterly, and one, two, and three-year horizons for values of + ranging from 0 to 30.
The horizontal dotted line indicates the value of 5.99, which is the 5% critical value for a y? random
variable with two degrees of freedom. The model parameters are n = 0.8, 6 = 0.7, m = 8, 8 = 1.
Consumption is measured as expenditures on consumer nondurables plus services; the time period is

1947:1-1997:4.
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the x? statistic as a function of 7. The scale for this statistic is given at the left-hand side of
each graph. The horizontal dotted line indicates the value of 5.99, which is the 5% critical value
for a x? random variable with two degrees of freedom. This critical value is given only as a
point of reference. If the parameters were chosen before looking at the data, the x%(2) would be
the appropriate distribution under the null hypothesis that the model fits in population, since
equation (2) must hold for each of two assets. However, the parameters used in this section
were chosen after an informal grid search, so the x?(2) critical values should only be used as an
informal guide.

In figure 7, the value of the x? statistic drops rapidly for all horizons as 7 increases. For
high enough values of v, there seems to be little evidence against the model. Note in particular
the rapid monotonic decline for the quarterly horizon (panel A). Results like these lead some to
argue that models with time non-separabilities are consistent with the behavior of short-term
asset returns.?6 An alternative interpretation, put forth by Hansen and Jagannathan (1997), is
that the x? statistic lacks power. In figure 7, the solid lines plot the modified HJ97 statistics as
v increases. The scale for these statistics, given at the right-hand side of each graph, is chosen
so that the HJ97 statistic and the y? statistic are at the same level for v = 0. According to
these results, only the longer horizons with + around 16-20 perform particularly well. A useful
point of comparison for these statistics is the value when v = 0, which implies a constant IMRS
of one. The HJ97 statistics for v = 0 are therefore the root-mean square (RMS) distance from
the set M of valid pricing kernels to m; = 1. The HJ97 statistics for the quarterly test of
the Abel model show that the RMS distance from the model to M is not much smaller than
the distance to m; = 1 for any value of v. However, for the 2 year horizons, the minimum HJ
distance is about a factor of nine smaller than for the model with constant m,: this indicates
that m is indeed getting close to the set M. The minimal value of the modified HJ97 statistic
at the two-year horizon (figure 7, panel C) is 0.033, occurring at v = 22. That is, the minimal
RMS error is on the order of 3.3%.

We have conducted a similar analysis of the Abel model using the alternative consumption
measures.?” When consumption is measured as purchases of consumer nondurables, the HJ97
statistics tend to be less favorable to the model. Higher values of + are required to get a
reasonable fit at the two-year horizon, and the three-year horizon does poorly. In contrast, when

the service flow from owner-occupied housing is omitted from the standard ND&S measure of

26See, for example, Ferson and Constantinides (1991) and Campbell and Cochrane (1994).
2"Detailed tabulations of these results are available from the authors.
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consumption, the model tends to perform somewhat better. In particular, rather low values of
the HJ97 statistic are found for the two- and three-year horizon when 7 equals 14.%® This is of
interest because the service flow from owner-occupied housing is not an observed series, but is

a construct that may be fraught with measurement error.

3.3.4 Constantinides Habit Persistence

We conclude this section by performing an analogous study of a particular parameterization of
Constantinides preferences. We measure consumption as ND&S, and set 6 = 0.9, n = 0.8, and m
= 2. The Hansen-Jagannathan bounds plots for are presented in Figure 8. Unlike the Abel model
displayed in Figure 6, the point estimates for this parameterization of the Constantinides model
satisfy the HJ bounds only at the two-year horizon. When the pricing kernels are projected onto
the space of asset returns (lower panel), none of the point estimates satisfy the HJ restrictions.
As with the Abel model, the two-year horizon comes closest to the HJ bounds. However, the
Hansen-Jagannathan mean-variance restrictions are not rejected statistically by the Hansen,
Heaton, and Luttmer (1995).

Figure 9 is the analogue for Constantinides preferences to figure 7. The x? test appears less
favorable to the quarterly horizon than with Abel preferences: In panel A of figure 9 the y?
statistics exceed the 5.99 critical value for all values of v. However, both the one- and two-year
horizons do quite well for values of v exceeding 4. Moreover, the modified HJ97 statistics indicate
that the y? statistics are small because the distance between m and M is indeed shrinking. For
example, the RMS distance between the model’s IMRS and the set of valid pricing kernels is only
0.038 for the two-year horizon with v equal to 10. As with the Abel model, the Constantinides
model does less well when consumption is measured by nondurables only. When housing services
are omitted from the data, the results are similar to those for ND&S.

To summarize the evidence from this section, the graphical H-J analysis, the x? statistics,
and the HJ97 statistics suggest that the Abel model performs best at the two-year horizon and

the Constantinides model does fairly well at both the one- and two-year horizons.

28With this measure of consumption, the HJ97 statistic when v = 14 is 0.038 for the two-year horizon and
0.053 for the three-year horizon.
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Figure 8: Hansen-Jagannathan bounds tests for Constantinides Preferences, for Non-
Durable and Services Consumption

The description for figure 6, applies here also, except that the preferences here are Constantinides; the
model parameters are n = 0.8, 6 = 0.9, m = 2, § = 1; the value of v ranges from 0 to 18; and the
spacing between the crosses is v = 2. This figure is for Non-Durable and Services Consumption.
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Figure 9: x? statistics and Hansen-Jagannathan (1997) statistics for Constantinides
Preferences.

The figure plots the x? statistic (dashed line) and the HJ97 statistic (solid line) implied by the Con-
stantinides model at the quarterly (panel A), one-year (panel B), two-year (panel C), and three-year
(panel D) horizon for values of v ranging from 0 to 30 (horizontal axis). The scale for the x? statistic
is on the left-hand side of the graph; the scale for the HJ97 statistic is on the right-hand side of the
graph. The horizontal dotted line indicates the value of 5.99, which is the 5% critical value for a y?2
random variable with two degrees of freedom. The model parameters are n = 0.8, § = 0.9, m = 2,

B = 1. Consumption is measured as expenditures on consumer nondurables plus services; the time
period is 1947:1-1998:1.
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4 Evaluation of Time Non-Separable Preferences When
Model Parameters Are Chosen Optimally

In the previous section, we simulate the Abel and Constantinides models over a grid of pa-
rameters. We found that, broadly speaking, these models appeared to perform poorly at the
quarterly horizon, fairly well at the two-year horizon, and with intermediate performance at the
one- and three-year horizons. In this section, we ask how well these models perform when the
parameters are chosen optimally. In particular, for each model we wish to see whether there are
parameter configurations that set the HJ97 statistic to zero (indicating that the mean residuals
from the asset pricing Euler equations equal zero in sample). If a zero value of this criterion is
achieved, we wish to see whether the parameter that achieve this value are ”plausible” in some
intuitive sense.?

In conducting this exercise, we note that the model is under-determined. We have only two
unconditional Euler equations (one for the 3-month T-bill return, and one for the equity return).
However, in each of the two models we have five parameters to choose: {/3,v,7n,8, m}. We set the
quarterly subjective discount factor § = .99 (implying a yearly discount rate of approximately
4%). We treat m, the number of lagged consumption in the habit-stock formation, as an
approximation to an infinite lag. We do so by letting m depend on 6: we set m as the smallest
number such that 6™ < 0.05. That is, we choose an m sufficiently big that the discarded lags
(those greater than m) all have discount factors less than 5%. This still leaves us with three
parameters {7,7n,6} and only two model restrictions. Since this is a highly nonlinear model,
one could find no parameter combinations that set the HJ97 statistic to zero or one could find
multiple parameter combinations that achieve this goal. To explore this question we fix ¢ at
three values {0.6,0.7,0.8}, and for each value we minimize the HJ97 statistic over parameters
{v,n}. When §6 = 0.8 (the maximum value we use), m = 14, implying that the habit stock
incorporates three-and-a-half years of lagged consumptions.

Before describing our general results, we illustrate the behavior of a particular model. In
figure 10 we consider how well the Constantinides model performs for two-year returns when
6 = 0.6. We consider values of v from zero to 40 (horizontal axis), and for each value of v we

find the value of n that minimizes the HJ97 statistic. Note that both v and 7 are curvature

9 This exercise is analogous to that performed by Campbell (1998) for time-separable preferences. Using a
variety of data sets from different countries, he computes the risk aversion parameter needed to match the mean
equity premium. His test of the model is whether the requisite level of risk aversion is plausible from an economic
standpoint.
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Figure 10: Optimal Choice of Curvature Parameters for Constantinides Model, Two
Year Horizon

For a grid of 4’s ranging from zero to 40, the Hansen-Jagannathan (1997) statistic ("HJ97”) is min-
imized by choice of parameter 1. The Constantinides model of preferences is used with consumption
measured by ND&S. Other model parameter are set as follows: 8 = 0.99; 6 = 0.6, m = 6. The top
panel of this figure plots the minimized HJ97 statistic for each value of v. The bottom panel gives the
minimizing choice of 1 for each value of 4. The time period is 1947:1-1997:4.
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parameters. One might think that there is a trade-off between these two parameters: a high
value of v acting similarly to a high value of 7. In the bottom panel of figure 10 we see that
this is indeed the case: The optimal choice of 7 declines as -y increases. It does not then follow,
however, that v and 1 are not separately identified. As one can see in the top panel of figure
10, there is a unique {7,n} combination that minimizes the HJ97 criterion. This pattern holds
generally: In all model variants and all return horizons, for each é there is a uniquely-identified
optimal {v,n} combination.

Table 2 gives the best-performing configuration of {8, ~,n} for each model and each horizon.
(When multiple values of ¢ achieve a zero value for the HJ97 statistic, we display the parame-
terization with the lowest value of 4.) The results broadly confirm the patterns discussed in the

previous section. First, for no model can we find a parameter combination that performs ac-
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Table 2: Minimum HJ97 Distances for Abel and Constantinides Models

For each model, ¢ is fixed at 0.6,0.7, or 0.8, m is set to the minimum value such that §™ < 0.05, and the
HJ97 statistic is minimized over {+,n}. These tables report the minimal value of the test statistic obtained, for
horizons of one quarter and 1, 2, and 3 years. Consumption is measured as ND&S. When the minimized HJ97

statistic equals zero for more than one value of §, the case with the lower value of v is displayed.

Horizon Abel Model Constantinides Model
(years) || HJpin | 6 ~y n  m || Hlun ‘ ) ~y n m

0.25 0214 |1 0.8 23.0 0.79 14| 0.115 | 0.8 289 0.77 14
1 0.015 | 0.8 721 0.59 14 | 0.000 | 0.8 17.2 0.80 14
2 0.000 | 0.6 179 0.85 6 || 0.000 [ 0.8 7.4 087 14
3 0.000 { 0.6 682 0.79 6 | 0.014 |06 588 0.85 6

ceptably at the quarterly horizon. In the Abel model, the minimum HJ97 statistic for quarterly
returns is 0.214; for the Constantinides model, this minimum HJ97 value is 0.115. Varying the
number of lags in the habit stock does not improve the performance of these models, nor does
using alternative measures of consumption. ¥ We conclude that these models are inconsistent
with the unconditional moments of short-horizon asset returns.

Second, for each model and each measure of consumption there exist parameter combinations
{v,n,6} that set the HJ97 statistic to zero for the two-year horizon. For the Constantinides
model, this good fit to the data does not require an excessive value of the curvature parameter
~. In particular, when 6 = 0.8, the Constantinides model requires v of only 7.4. The Abel
model requires somewhat higher values of v to set the HJ97 statistic to zero. The best fit
for the Abel model at the two-year horizon occurs when § = 0.6. For this value of §, the
optimal v equals 17.9. In that sense, one can argue that the Abel model has more difficulty
than the Constantinides model in fitting the unconditional moments of the asset-return data.
Furthermore, in the Abel model the coefficient of relative risk aversion is time-varying, but
always exceeds 7, often by a good deal. (See equation (11).) For example, the mean coefficient
of relative risk aversion implied by the parameters that achieve a zero HJ97 statistic for the
two-year horizon (6 = 0.6,y = 17.9,7 = 0.85) is 114. Thus, the best-fitting parameterizations of
this model do imply extremely high (perhaps implausible) risk aversion. In contrast, it has been

noted by Constantinides (1990), Ferson and Constantinides (1991), and Boldrin, Christiano, and

30The minimal HJ97 statistics obtained for the quarterly horizon using nondurable consumption only are 0.232
and 0.136 for the Abel and Constantinides models, respectively. When housing services are omitted from ND&S,
the corresponding statistics are 0.215 and 0.117.
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Fisher (1995) that habit formation in the Constantinides model does not accentuate risk aversion
to the extent that it does in the Abel model. While a closed-form expression for the coefficient
of relative risk aversion is not available for the Constantinides model, numerical analyses of
simpler versions of the model by these authors suggest that the mean coefficient of relative risk
aversion is only slightly higher than v. We conclude that the Constantinides model can match
the unconditional properties of these asset returns at the two-year horizon without imposing
extreme levels of risk aversion.

Third, in both models we can find parameter combinations {v,7, 6} that set the HJ97 crite-
rion to zero for the one-year horizon. This generally holds for other measures of consumption as

1.3 However, the requisite value of v needed at this one-year horizon is always substantially

wel
higher than that needed for the two-year horizon. Specifically, the best-performing parameter
configuration for the Abel model at the one-year horizon sets v equal to 72. As with the two-year
horizon, the Constantinides model requires a substantially lower value of 17.2. Still, this value
of v exceeds that required to fit the data at the two-year horizon. Fourth, the Constantinides
model does not set the HJ97 statistic to zero at the three-year horizon for any value of 6. The
Abel model can achieve a zero value for the HJ97 statistic at the three-year horizon (when ¢
equals 0.7 or 0.8), if a high value of v (in excess of 68) is assumed.

Finally, the results do seem sensitive to the number of lagged consumptions (”m”) used to
construct the habit stock. While the Constantinides model performs fairly well at the two-year
horizon when 6 = 0.6 or 0.8, it does rather poorly when 6 = 0.7. The problem is not with the
value of § per se, but with the value of m = 9 implied by 6 = 0.7. When we fix 6 = 0.7 but set
m = 6, the model behaves much like the case in Table 2 with 6 = 0.6. Similarly, when m = 10

(but ¢ remains fixed at 0.7), the model resembles the case in Table 2 with § = 0.8.

5 Bandpass Correlations of the Innovations in Consump-
tion and Asset Returns

Although we have demonstrated evidence of a strong unconditional correlation between con-
sumption growth and asset returns at business cycle frequencies, this correlation could be caused
by predictable co-movement of the consumption growth and return series, as opposed to co-

movements of the innovations.?? There is strong evidence of variation in expected returns across

31 An exception is the Abel model using nondurable consumption, where the minimal value of the HJ97 statistic
is 0.015 (when ¢ is set to 0.8).
32We thank Richard Roll for pointing this out to us.
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the business cycle.?® If consumption growth is forecastable using the same business cycle indica-
tors, this could mean that the large unconditional correlation we observe is evidence of a large
correlation between the expected consumption growth and expected future returns, as opposed
to a high correlation of the innovations.

To justify the high average return on the market, a high correlation between the innovations
of these two series is required. Intuitively, agents should require a high return on assets which
have unexpectedly low returns in unezpectedly bad (high marginal utility) states. Mathematically,
we can show this in the following way: Let Ry, ; denote excess real returns from ¢ to t+1, and R rt
denote the gross real risk-free rate between ¢ and ¢t 4+ 1. From the standard pricing relationship

(equation (1)) we have:
1
Ry,

The unconditional relation that we have tested comes from taking unconditional expectations

B[ 1 Rei1] =0 and Emyq] =

and then applying the definition of covariance operator:

1
Ry

where cov(m, R) is the unconditional covariance. Intuitively, this relationship means that, for

Em|E[R]|=FE [ 1 E[R] = —cov(m, R) (25)

an asset to have a high unconditional return, it must be the case that its realized return R is
high when growth in marginal utility m is low.

However, we can derive a bound which uses the average conditional covariance by rewriting
the first relation as:

Ey[ie 1) Ed[Rev1] = covy(yyr, Reyr).

The left hand side of this equation is equal to:

} - } - R
Ey[mia] - B[Ry = By [Et[mwrl] : Rt+1} = E; lRtH] .
f?t
Taking unconditional expectations yields
R _ -
E l R’*“] = —E [cov(ius1, Resa)] (26)
f7t

where the ¢ subscripts on covariance operator denotes that this is the conditional covariance as

of time ¢.34

33For example, Fama and French (1989) show that the term spread and the default spread forecast future long
horizon returns, and Chen (1991) shows that these same variables forecast future economic activity.
34 Alternatively, we can write the unconditional covariance as:

cov(m, R) =F |:CO’Ut(ﬁ’Lt+1, j?t+1):| + E |:CO7)t<Et [mt+1], Et[ét+1])
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Empirically, the risk-free rate in our sample period is slightly negatively correlated with the
excess return on the market. This means that, in sample, the LHS of equation (26) is larger than
E |:Rt+1 / Rf,t} in equation (25). In our sample, the values are 1.979% and 1.970% respectively.
This says that the bound on the average conditional covariance is at least as stringent as the
bound on the unconditional covariance.

Intuitively, the left-hand side of equation (26) is the amount the representative agent would
be willing to pay at time ¢ to gain in the expected excess return from the risky asset, were this
return riskless. The right hand side of equation (26) is the amount the representative agent
would be willing to pay at time ¢ to avoid the risk that goes along with holding the risky asset.
In equilibrium, these two must be equal.

What does equation (26) imply about our tests? It says that correlation of the residuals
of consumption growth and the asset returns must be highly correlated. To examine whether
this is indeed the case, we calculate correlation of the unexpected complements of consumption
growth and the value weighted index return. We do this by simply regressing log consumption
growth and the excess value weighted index return on three ex ante variables which have been
shown in the past research to forecast future stock returns. These are: the default spread (DEF)
which is the difference between the annual yield of the Moody’s average corporate portfolio and
the annual yield on the Moody’s AAA corporate portfolio at the end of the preceding quarter;
the yield on the three month T-bill at the end of the preceding quarter (TB3); and the one year
log-change in non-seasonally adjusted monthly industrial production, up through the end of the
preceding quarter (AIP). The coefficients of these regressions for each of the consumption series
we consider are presented in Table 3.

The regression results show that these variables to a good job of forecasting future quarterly
returns on the VW index. Additionally, the variables have some ability to forecast future
consumption growth, and moreover the signs of the coefficients on each of the instrumental
variables are the same as those obtained for the returns series.

To see how removing the predictable component affects the correlation of these series, we

Since,
E[Covt(Et[th]aEt[RtH])} = E[(mey1 — Eyfmeya]) Rega]
Ris 1 ~
= F —FEF|— | F|R
Ry [Rf,t] { t+1}

Combining this with equation (25) gives equation (26).
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Table 3: Forecast Regressions for Returns and Consumption Growth Series

In this table we present the regression coefficients, t-statistics (in parentheses) and R?s from the quarterly
regression of the VW excess-return series and the set of real log-consumption growth rate series on a set of
instrumental variables. The time period is 1947:1-1997:4. The instrumental variables are: DEF, the default
spread which is the difference between the annual yield of the Moody’s average corporate portfolio and the
annual yield on the Moody’s AAA corporate portfolio at the end of the preceding quarter; TB3, the yield on
the three month T-bill at the end of the preceding quarter; and AIP, the one year log-change in non-seasonally
adjusted monthly industrial production, up through the end of the preceding quarter. All interest rate variables
and all consumption data are from CITIBASE. The monthly, non-seasonally-adjusted industrial production data
was obtained from the Federal Reserve Bank of Chicago web site. The value-weighted index returns series is

from CRSP.

| Series | o | DEF  TB3 AIP | R*(%) |
VW | 0.0268 | 0.1376 -0.0116 -0.1447 | 15.2
(2.08) | (3.91) (-5.01) (-1.57)
Total ] 0.0072 | 0.0067 -0.0008 -0.0219 | 6.7
(4.49) | (152) (-274)  (-1.90)
ND&S || 0.0055 | 0.0044 -0.0005 -0.0009 | 3.7
(5.54) | (1.62) (-2.66) (-0.13)
Dur 0.0192 | 0.0255 -0.0031 -0.1408 7.6
257) | (1L.25) (-2.32) (-2.63)
NDur || 0.0040 | 0.0049 -0.0006 -0.0032 2.8
(2.69) | (1.23) (-2.25) (-0.30)
Serv | 0.0070 | 0.0039 -0.0005 0.0011 3.7
(7.48) | (1.51) (-2.70) (0.17)

run the bandpass regressions of Subsection 2.2 using the residuals from these regressions. The
results of this analysis are presented in Table 4.

A comparison of the results in this Table with the results in Table 1 shows a considerable
drop in the correlations at business cycle frequencies; most of the raw correlations are close to
50 percent lower for the residuals than for the raw series. Moreover, whereas the correlations for
the raw series were highly statistically significant, the smallest p-value we obtain here is about
27 percent.

This suggests that a large fraction of the correlation between consumption growth and the
market return at business cycle frequencies is indeed due to covariation between the expected
complements of the market return and consumption growth rather than covariation of the in-
novations.

How should we interpret these results? On the surface these results are inconsistent with
standard asset pricing models. Since the conditional correlation at all frequencies is close to

zero, stocks cannot really be interpreted as ”risky” for an agent with consumption proportional
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Table 4: Correlation of Bandpass Filtered Regression Residuals

Quarterly excess CRSP VW index returns and a set of real consumption growth series over the period 1947:1-
1997:4 were regressed on a set of ez-ante observable instruments as described in the text and in Table 3. The
residuals from each of these regressions were each filtered using one of the three filters, as described in the text.
The maximum correlation coefficient between the two filtered series, pyqq, is computed as in equation (4). The
value of prax as well as the maximizing value of 7 (Ty,4.) are given in the Table for each filter. The Monte-
Carlo determined p-values are given in parentheses. These indicate the probability of obtaining a number at
least as large as the sample value assuming that the return residuals are i.i.d. normal, and independent of the
consumption growth residuals. Seven measures of consumption are used: total, and nondurables plus services
("ND&S”); the components consumer durables ("Dur.”), non-durables (?NDur”), and services (”Serv.”).

Filter
Series trend ‘ cycle | high
Total | Pras || 0.1428 (0.469) | 0.3010 (0.320) | 0.2055 (0.176)
Tmaz -3 2 0
ND&S | praz || 0.0996 (0.515) | 0.3168 (0.273) | 0.1690 (0.422)
Tmaz -1 2 -1
Dur Pmaz || 0.1866 (0.428) | 0.2351 (0.565) | 0.1862 (0.291)
Tmaz -4 2 -4
NDur | pmaz || 0.2474 (0.367) | 0.3043 (0.310) | 0.2664 (0.025)
Timaz -1 2 0
Serv Pmaz || -0.0167 (0.633) | 0.2475 (0.518) | 0.1502 (0.590)
Timaz 2 1 3

to aggregate consumption.

Alternatively, it is possible that the relationship between our forecasting variables and future
stock returns is a result of data mining. Since both consumption growth and stock returns should
be related to innovations in economic growth, data mined variables which “forecast” future
returns would also be likely to forecast future consumption growth. Under this interpretation,
the regressions in Table 4 are telling us not about forecasted changes in consumption and
returns, but instead about unexpected changes. A similar interpretation is that the ability of
these instrumental variables to forecast economic growth is sample specific: in the period we
examine business cycles were very regular, and consequently very forecastable. However, agents

did not know ez-ante that this would be the case.

6 Conclusions

In this paper, we ask whether consumption-based pricing models work better at longer horizons
than at the quarterly horizon. Our motivation is that if frictions, transactions costs, or durability

affect the comovements of consumption growth and asset returns, they should primarily affect
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the higher frequency components.

We first show that consumption-growth and equity returns are virtually uncorrelated at
high frequencies. However, we find that at lower frequencies, corresponding to swings longer
than one and one-half years, the two series are highly correlated. We then test three models
of the pricing kernel: time-separable power utility; the Abel (1990) “Catching up with the
Joneses” preferences; and the Constantinides (1990) habit-formation preferences. We find while
all models perform poorly at quarterly horizons, the Abel (1990) and Constantinides (1990)
models perform well at longer-horizons. The Hansen and Jagannathan (1991) bounds, modified
to take account of correlation the correlation between the pricing kernel and asset returns, are
satisfied. A yx? moment restriction test is not rejected, and the modified Hansen, Heaton, and
Luttmer (1995) specification test suggests that our inability to reject the model is not due high
volatility of the pricing kernel.

One caveat is that, while the unconditional correlation between consumption growth rates
and the market return is high at business cycle frequencies, most of this correlation is due
to co-movements in forecastable components of consumption growth and asset returns. The
innovations in these two series appeared to be uncorrelated, at least at statistically significant
levels.

Our results raise numerous questions for further research. First, it suggests that correlation
puzzle may at least partially be due to frictions that disrupt the high-frequency co-movements
of marginal utility growth and returns. However, it also necessary to first understand why past
attempts at modeling frictions to explain the equity-premium puzzle have not been entirely
successful.

The Abel and Constantinides models motivate agents to save at relatively low interest rates,
even though consumption grows, because the marginal utility-value of a given level of consump-
tion also grows. There may be other ways to motivate saving, such as by looking carefully at
life-cycle models of saving and investment.

Finally, we consistently find that the models with time-nonseparabilities perform better at
the two-year horizon than at the three-year horizon. (The Constantinides model does rather
poorly at the three-year horizon.) This represents somewhat of a puzzle. If the only reason
for the poor performance of consumption-based models at short horizons is transient, short-
term frictions, then one would expect the models’ performance to improve monotonically as the
horizon lengthens. One possibility is that, because of changes in the consumption basket over

time, measurements of very long horizon consumption growth rates are inaccurate.
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Appendices

A Construction of the Data

The total quarterly real non-durable, durable, services, and total consumption series, the defla-
tors for each of the three components series, and the population series (GPOP) were extracted
from CITIBASE for the 1947:1-1997:4 period.

Monthly VW index returns were obtained from CRSP, and were cumulated to obtain quar-
terly returns. One month T-Bill returns were taken from the CRSP RISKFREE file. One,
two, and three year nominally risk-free rates were computed as the returns to one-, two-, and
three-year zero-coupon bonds, computed from the Fama-Bliss data in CRSP.

B Construction of the Coherency and Phase Estimates
and Confidence Intervals

To construct the coherency and phase estimates plotted in Figures 1 and 2, the two series x and
y (log consumption growth and returns) and are first each subdivided into N non-overlapping
subsamples of length n (here, n = 16 quarters). Each of these subsamples is then detrended and
windowed using a Hamming window. The detrended, windowed subsamples are then fast-fourier
transformed to generate J,(w) and .J,(w), which are equal to, for z,

n—1
Jo(w) =n"1Y " me ™
=0

where each of the subsamples is indexed from ¢ = 0,...,n — 1. Note that J, and J, will be
complex. The x and y power-spectral densities and the cross-spectral densities are then defined
as:

L& n g k(, \*
1 & n k k(o \x
Pyy(w) N kz::l %‘]y (w)‘]y (CU)
1 X n .
Palw) = 53 sm @) IHw)

B
Il
—

where J¥(w) denotes the Fourier transform of the k’th subsample, and * denotes the complex
conjug ate.

Although P,, and P, are real valued, in general the cross- spectral density will not be. The
coherency between the two series is defined as:

Pyl
[PM(W)Pyy(w)]l/Q

Sey(w) =
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and the phase is defined as:

1 m(Pwy(w))>
Re(Pay(w)) )

where I'm(-) and Re(-) denote the imaginary and real components, respectively. With these
definitions,

¢zy(w) = arctan (

Pry(@) = (Proa(w) Py (w))/? 54 (w) iz

Finally, confidence intervals for the coherency and phase were calculated using the method
described in Bloomfield (1976, Section 9.5). The upper and lower bounds of the 95% confidence

intervals are therefore:

tanh (arctanh(Pwy(w)) + @>

V2

where g% = (2/3)(n/T), is a constant based on the Hamming window (see p. 224 of Bloomfield
(1976).) The 95% confidence intervals for the phase are:

1
Pmy(w)Q

G y(w) £ —1.
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