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Outline
Consumption Based Asset Pricing in Frictionless, RE Models

Explaining Market & Risk-Free Asset Returns

The equity premium & correlation puzzles.

Explaining Size and Book-to-Market Sorted Portfolios

Sharpe Ratios and Correlations.

How Long Horizons Could Potentially Help

consumption, return serial correlations &

cross-correlations

Hansen-Jagannathan analysis

What might explain the discrepancies?
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Frictionless RE Model Implications:

The pricing equation in discrete time is:

Pi,t = Et

[

m̃t+1 Ỹi,t+1

]

for any asset, portfolio, or dynamic trading strategy i
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Frictionless RE Model Implications:

The pricing equation in discrete time is:

1 = Et

[

m̃t+1 R̃i,t+1

]

in Gross-Return Form
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Frictionless RE Model Implications:

The pricing equation in discrete time is:

0 = Et [m̃t+1 r̃i,t+1]

for any excess-return ri,t+1

This is just the FOC from the maximization problem, and

hence is valid for any investor, for any asset or portfolio of

assets,
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Frictionless RE Model Implications:

The pricing equation in discrete time is:

0 = Et [m̃t+τ r̃i,t+τ ]

for any excess-return ri,t+τ , for any τ

This is just the FOC from the maximization problem, and

hence is valid for any investor, for any asset or portfolio of

assets,

and over any time period

e.g., from t to t+ τ
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Model Implications – HJ Bounds

From the covariance definition:

cov(m̃, r̃i) = E[m̃ r̃i]− E[m̃]E[r̃i]
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Model Implications – HJ Bounds

From the covariance definition:

cov(m̃, r̃i) = E[m̃ r̃i]
︸ ︷︷ ︸

=0

−E[m̃]E[r̃i]

using E[m̃ r̃i] = 0, gives:

cov(m̃, r̃i) = −E[m̃]E[r̃i]
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Model Implications – HJ Bounds
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Model Implications – HJ Bounds

cov(m̃, r̃i) = −E[m̃]E[r̃i]

Rearranging gives E[r̃i]:

E[r̃i] =
−1

E[m̃]
cov(m̃, r̃i)
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Model Implications – HJ Bounds

cov(m̃, r̃i) = −E[m̃]E[r̃i]

Rearranging gives E[r̃i]:

E[r̃i] =
−1

E[m̃]
cov(m̃, r̃i)

use cov(m, r) = σmσrρm,r to get:

σm

E[m̃]
=

(
−1

ρm,r

)(
E[r̃i]

σr

)
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Model Implications – HJ Bounds

cov(m̃, r̃i) = −E[m̃]E[r̃i]

Rearranging gives E[r̃i]:

E[r̃i] =
−1

E[m̃]
cov(m̃, r̃i)

use cov(m, r) = σmσrρm,r to get:

σm

E[m̃]
=

(
−1

ρm,r

)(
E[r̃i]

σr

)

Finally, using ρm,r > −1 gives the Hansen and Jagannathan

(1991) bound:
σm

E[m̃]
≥

E[r̃i]

σr
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Model Implications – HJ Bounds

σm

E[m̃]
≥

E[r̃i]

σr

We know from the previous literature (see, e.g., Cochrane

and Hansen (1992)) that the Market Sharpe ratio is high

relative to consumption volatility, so we need a high CRRA to

explain just the market risk premium:
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Implications for Risk-Aversion
For example, if the representative agent has:

U(Ct) = βtC
1−γ

1− γ

then

m̃t+τ =
U ′(C̃t+τ )

U ′(Ct)
= βτ

(
Ct+1

Ct

)
−γ

Then, taking logs:

log(m̃t+τ ) = τ log(β)
︸ ︷︷ ︸

assume=0

−γ∆ct+τ

where ∆ct+τ is the change in log(C) from t to t+ τ .
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Implications for Risk-Aversion (2)

then, use ex = 1 + x+ x2

2
+ . . ., to get

m̃t+τ = 1− γ∆ct+τ

(

+
γ2

2
(∆c)2 + · · ·

)

This means that σm ≈ γσc and

γ
σc

E[m̃]
≥

E[r̃i]

σr

Since σc is small, we need a big γ to explain the high market

Sharpe ratio.

This is the equity premium puzzle.
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Hansen-Jagannathan Bounds
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The Correlation Puzzle

However, it is actually a bit worse than this:

σm

E[m̃]
=

(
−1

ρm,r

)(
E[r̃i]

σr

)

The problem is that the correlation between consumption

growth innovations and the market return is about 10%.

This suggests that the bound is really a factor of ∼10 worse.
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The Correlation Puzzle

Cochrane and Hansen (1992) suggest examining HJ plots

which use the calculated m∗ rather than m

m∗ is the projection of m onto the asset return space.

If m is a valid pricing kernel, then m∗ will also be a vaild

pricing kernel.
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Hansen-Jagannathan Bounds
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Summary – Equity Premium Puzzle
For the market:

σm

E[m̃]
=

(
−1

ρm,r

)(
E[r̃i]

σr

)

1. σm is too small.

2. The market Sharpe ratio is too big

3. The consumption/return correlation is too small (and ρm,r

is too far away from −1).
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Summary – Equity Premium Puzzle
For the market:

σm

E[m̃]
=

(
−1

ρm,r

)(
E[r̃i]

σr

)

1. σm is too small.

2. The market Sharpe ratio is too big

3. The consumption/return correlation is too small (and ρm,r

is too far away from −1).

Now, what happens when we:

1. include size and BM sorted portfolios?

2. move to long horizons?
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Cross-Section of Average Returns
Since the equity premium became a puzzle, we have

uncovered a number of new sorting variables that produce

big cross-sectional differences in average returns:
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Cross-Section of Average Returns
Since the equity premium became a puzzle, we have

uncovered a number of new sorting variables that produce

big cross-sectional differences in average returns:

1. Fama and French (1992): Size and Book-to-Market,

2. Jegadeesh and Titman (1993): Momentum,

3. Pastor and Stambaugh (2003): Liquidity,

2003 NBER AP-SI, Parker & Julliard Discussion, Kent Daniel – p. 13/23



Cross-Section of Average Returns
Since the equity premium became a puzzle, we have

uncovered a number of new sorting variables that produce

big cross-sectional differences in average returns:

1. Fama and French (1992): Size and Book-to-Market,

2. Jegadeesh and Titman (1993): Momentum,

3. Pastor and Stambaugh (2003): Liquidity,

These anomalies produce apparently large Sharpe Ratios

(MacKinlay (1995))
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Cross-Section of Average Returns
Since the equity premium became a puzzle, we have

uncovered a number of new sorting variables that produce

big cross-sectional differences in average returns:

1. Fama and French (1992): Size and Book-to-Market,

2. Jegadeesh and Titman (1993): Momentum,

3. Pastor and Stambaugh (2003): Liquidity,

These anomalies produce apparently large Sharpe Ratios

(MacKinlay (1995))

Additionally, the returns from these strategies are even less

correlated with consumption growth than is the market.
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Hansen-Jagannathan Bounds
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Hansen-Jagannathan Bounds
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Can Long Horizons Help?

The same HJ bound restrictions apply at long-horizons:

σm

E[m̃]
≥

(
E[r̃i]

σr

)

However, moving to long-horizons won’t help if:

1. marginal utility growth is serially uncorrelated.

2. returns are serially uncorrelated

In this case both sides of the HJ bound will be ∼
√
τ .
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Can Long Horizons Help?

σm

E[m̃]
≥

(
E[r̃i]

σr

)

For a long horizons consumption-based model to work

(without extreme preferences) it will have to be the case that

there is either:

1. strong positive serial correlation in consumption growth

(and calculated marginal utility)

2. strong negative correlation in the portfolio returns∗

Also, the maximum Sharpe ratio portfolio should have a

strong negative correlation with the long-horizon pricing

kernel.
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The Consumption Data
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Consumption Serial Correlation
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HML Return Correlation
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Consumption-Return Correlation
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Consumption-Return Correlation
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Long Horizon H-J Bounds
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Long Horizon H-J Bounds
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PG C-CAPM
Start with the covariance expansion (valid for all τs):

cov(m,R) = E[mR]
︸ ︷︷ ︸

=1

−E[m]E[R]

Rearrange, and use m = 1− γ∆c

E[R] =
1

E[m]
−

σ2
m

E[m]

cov(m,R)

σ2
m

= Rf +
γ2σ2

c

E[1− γ∆c]

γcov(∆c, R)

γ2σ2
c

= Rf +
γσ2

c

E[1− γ∆c]
︸ ︷︷ ︸

≡λS

cov(∆c, R)

σ2
c

︸ ︷︷ ︸

≡βi,S
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PG C-CAPM (2)

PG estimate FM regressions to get λS Then, they invert the

relation:

λs =
σ2
m

E[m]
=

γ2σ2
c

E[1− γ∆c]

to infer the CRRA (γ) from the Fama-MacBeth slope

coefficient.

However, the log-linearization doesn’t work very well in

approximating E[m], especially at long horizons, and for

large values of γ:

The next term in the expansion is:

m = 1− γ∆c+
γ2

2
(∆c)2 + ...
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